

Table des matières

	Pages
Introduction	2
Les résines époxydes - Historique - Processus de polymérisation - Les paramètres de formulations des systèmes époxydes pour le bois	3 4 4
Théorie du collage Bois / Epoxy	5
Performances du bois comparées aux matériaux composites	8
Le renforcement par fibres d'un bordé - Sur bordés classiques - Sur du bois en tant que matériau d'âme	8 8
Les renforts fibres - Les renforts multidirectionnels	10
Les méthodes d'assemblage dans le bois / époxy - Conditions d'applications des systèmes époxydes - Conception des assemblages collés	11
- Types d'assemblages - Le joint-congé	12 12
Les méthodes de construction - Le lamellé-collé	14
 Le la litelle-colle Le bois moulé sur lisses Le bois moulé sur lisses jointives Le Strip planking 	15 16 17
Les systèmes époxydes SICOMIN pour le bois - SR5550, SR 8450, Wood Impreg - Tableau de sélection résines / applications - Mémento des propriétés des résines - Conseils de mise-en-oeuvre - Nature et fonctions des charges - Produits de finition	18 19 20 21 25 27
Appendice - Les essences de bois utilisées en construction bois / époxy - Utilisation des résines époxydes: généralités sur l'hygiène et la sécurit - Données toxicologiques et de sécurité	29 é 31 34

Systèmes SICOMIN Bois / Epoxy

Tant que les hommes navigueront, les techniques de construction de leurs bateaux évolueront avec les matériaux de leur temps. Les innovations technologiques de notre vingtième siècle ont bien sûr été utilisées en construction navale. Même si l'on construit avec les matériaux "high-tech" de la conquête de l'espace, le bois ne cesse d'être redécouvert et vénéré. Le bois est le matériau marin par excellence et ce, pour bien des raisons.

D'une part pour sa disponibilité dans une grande variété d'espèces, de qualités, son esthétique et son faible coût pour la plupart des espèces courantes. D'autre part pour les nombreux avantages techniques de ce matériau renouvelable, tant par sa facilité d'usinage, sa résistance à la fatigue, ses performances mécaniques en rapport à sa densité, que son excellent comportement au feu et à la température (face à certains matériaux d'âme).

Le bois restera encore longtemps l'un des matériaux privilégiés de la construction navale.

Son seul défaut est son comportement instable au contact d'un environnement agressif: la mer. Le bois est une matière vivante: immergé il absorbe l'eau, mis à sécher il se rétracte, provoquant des fissures sur le bordé; au contact de l'air, il est sensible aux dégradations bactériologiques. La construction traditionnelle ne prévoyant aucune colle, c'est l'ambiance humide qui, en faisant gonfler le bois, donne l'étanchéité et la rigidité à l'ensemble. Mais cette même teneur en eau provoque la diminution des résistances mécaniques du bois. Pour une humidité relative de 25%, on considère que le bois a déjà perdu 50% de ses valeurs mécaniques en traction et flexion. Au-delà de 25%, l'eau remplit les cavités des fibres, la moisissure trouve un terrain fertile à son développement et la dégradation du bois commence. C'est pour cela que les architectes et les constructeurs d'autrefois augmentaient l'échantillonnage des unités afin d'élever le coefficient de sécurité. Pour le propriétaire d'un bateau traditionnel, cette absorption d'eau se traduit par une maintenance coûteuse en immobilisation et matériaux.

La construction navale traditionnelle a été profondément bouleversée avec les résines thermodurcissables de synthèse hautes performances issues des recherches aérospatiales ; et des peintures anti-corrosion. Les produits époxy ont permis d'obtenir des progrès décisifs dans la construction en composite bois (Tableau 1). La technique de saturation du bois à l'époxy a vu le jour aux Etats-Unis il y a une vingtaine d'années. Les principes de base sont:

- Isolation du bois par un polymère étanche et adhésif
- Lamellés collés pour les pièces volumineuses et structurelles
- Utilisation des bois de faibles densités
- Combinaison du bois et des composites fibres / époxy

Il est désormais possible de conserver et d'améliorer les performances du bois, atteignant ainsi des résistances et une facilité d'entretien inaccessibles auparavant. Les propriétés mécaniques du bois sont optimales à 10% d'humidité et chutent avec l'accroissement hygrométrique. Il faut donc isoler le bois du milieu ambiant. Grâce aux performances des résines époxydes, le bois est maintenu entre 9 et 12% d'humidité, lui garantissant les meilleures qualités mécaniques et une stabilité dimensionnelle idéale, donc une longévité accrue.

En employant ces méthodes de construction, de nombreux professionnels et amateurs ont réalisé des bateaux possédant un rapport rigidité / poids extrêmement élevé, conservant l'aspect du bois, et nécessitant aussi peu d'entretien que les unités en stratifié polyester (ces dernières pouvant être sujettes au phénomène d'osmose). Le bois utilisé en tant que structure ou matériaux d'âme, combiné judicieusement avec des fibres de verre, de carbone ou d'aramide, le tout assemblé avec des résines époxydes, permet des structures composites plus légères, plus résistantes et souvent moins onéreuses que les projets utilisant un seul matériau. Les applications sont aussi diverses et extrêmes qu'on peut l'imaginer: Multicoques de 26m, patrouilleurs rapides de haute mer de 40 mètres, restauration et restructuration de vieilles unités, mais aussi pales d'éoliennes, skis, archerie... Les possibilités d'applications sont sans limites.

Opérations unitaires Choix du bois	Construction traditionnelle Bois denses, bonne durabilité Chêne, orme, résineux	Construction bois / époxy Bois légers Red cédar, acajou
Assemblages	Clous, rivets Clés, queue d'aronde, mortaises	Collage, joints congés, stratification
Adhésifs	Urée-formol, résorcine, polyester	Epoxydes
Pièces structurelles	Bois massif	Lamellé collé: épaisseur maximum du bois de 2.5 cm. Stratifiés multiaxiaux sur bois de faibles densités
Membrures	Chêne scié, accacia plié à la vapeur	Lamellé collé, OMEGA Système
Coques	Bordés cloués, clins	Lisses jointives, bois moulé, CP
Ponts	Planches calfatées Planches / élastomères Contre-plaqué	Contre-plaqué Lisses faible section collage époxy Sandwichs
Cloisons	Planches, Contre plaqué	Panneaux sandwichs, CP
Isolation du bois	Goudrons, Calfats	Résines et peintures époxydes
Peintures oeuvres mortes	Glycerophtaliques	Peintures polyuréthannes

Tableau 1- Matériaux et technologies des constructions navales traditionnelles et actuelles

Les résines époxydes sont à l'heure actuelle irremplaçables, leurs propriétés typiques sont:

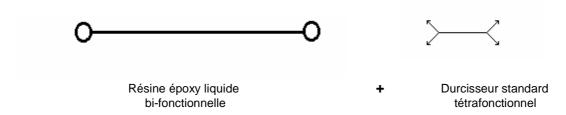
- Durcissement avec un retrait extrêmement faible
- Système de réticulation modulable selon la réactivité du durcisseur et de la température
- Bonne stabilité au stockage
- Faible viscosité et degré de charge élevé
- Charges variées: renforçantes, colorantes, allégeantes, thixotropantes, anti-abrasives, conductrices,
- Propriétés adhésives sur tous types de support avec ou sans préparation de surface
- Collage avec ou sans pression
- Résistance chimique envers milieux aqueux
- Performances mécaniques et thermiques jusqu'à 150℃
- Mélange des deux composants par pesée ou dosage volumique
- Prix raisonnable

Inconvénients:

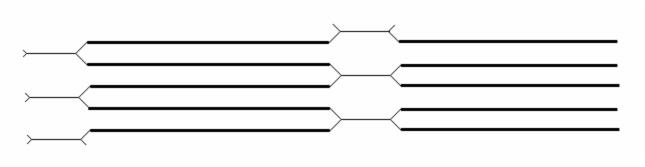
- Stabilité aux ultra-violets faible (phénomème de farinage de surface), problème résolu par la mise en peinture des stratifiés et revêtement par les polyuréthanes
- Rigueur des dosages

Les résines époxydes, historique.

C'est en 1909 que le chimiste Russe Prileschajew découvrit que les oléfines réagissaient avec l'acide perbenzoïque pour donner une fonction époxy. Dans les années 40, le Suisse Pierre CASTAN et l'Américain Sylvan GREENLEE, revendiquent simultanément la paternité d'une matière plastique thermodurcissable composée d'une résine et d'un durcisseur. La production industrielle débutera dans les années 50 pour répondre à une demande croissante de revêtements performants.


Depuis 1960, plus d'une cinquantaine de structures chimiques distinctes ont été mises au point avec des nuances quant à la masse moléculaire, l'isomérie, la pureté...

Avec une centaine d'agents de réticulation, des agents modificateurs, des diluants , des charges organiques ou inorganiques, il peut être préparé une variété infinie de formules. Les époxydes sont considérés comme une avance technologique sans précédent sur les résines phénoliques et les polyesters.


Processus de polymérisation

Ces résines sont des bi-composants composés d'une partie résine époxy et d'une partie durcisseur. Les durcisseurs contiennent des terminaisons capables de s'additionner sur les cycles époxydes de la résine lors de la mise- en œuvre, ou des fonctions catalytiques qui déclenchent la copolymérisation du système époxy. Cette réaction s'effectue sans élimination, le polymère obtenu n'a donc qu'un retrait minime. La résine époxy parfaitement polymérisée, fait partie de la famille des plastiques thermodurcissables qui, par définition ,sont infusibles et insolubles sous l'action de la chaleur, des solvants, des radiations.

On peut se représenter la réaction d'une résine époxy bi-fonctionnelle et d'un durcisseur tétrafonctionnel classique (Schéma 1) par :

Résine époxy après quelques heures à température ambiante. Le polymère possède déjà des propriétés mécaniques. Des fonctions époxydes et amines n'ayant pas réagi sont encore présentes dans le réseau.

Résine époxy parfaitement réticulée: performances mécaniques, thermiques et chimiques optimales. La densité du réseau tridimensionnel a une influence sur la perméabilité à la vapeur d'eau.

Schéma 1- Représentation graphique du processus de polymérisation d'un système époxy

Lors du mélange des deux composants, il est primordial de respecter les dosages préconisés. Les schémas cidessus illustrent l'influence d'un excès ou d'un défaut de durcisseur. Le polymère obtenu n'est pas dans sa configuration optimale de performance mécanique et contient encore des groupes époxy ou amines qui seront facilement attaqués par des agents chimiques tels que l'eau.

Les paramètres de formulations d'un système résine époxy / durcisseur pour le bois

Le choix des matières premières utilisables est dicté par la spécificité d'application pour la construction bois. La définition de produits époxydes pour le bois demande une sérieuse expérience dans la chimie et une connaissance approfondie de la construction navale. Par la connaissance des produits époxydes et sa longue expérience de formulateur, SICOMIN propose des systèmes bois parfaitement adaptés à cette application.

Une formulation de système époxy pour le bois doit répondre à un cahier des charges:

- Utilisations et sollicitations de la pièce finie, échantillonnage des renforts envisagés, résistances souhaitées coefficient de sécurité, poids final, production à l'unité ou en série, prix

- Paramètres de mise en œuvre: température, hygrométrie, quantité, technologie de transformation, nature du support, préparation de surface
- Evolution de la viscosité du mélange et de la chaleur de réaction en fonction de la température, de la masse, de la géométrie de la pièce à réaliser (revêtement, épaisseur du stratifié, volume de coulée)
- Sélection des composants de base, des facteurs qui favorisent l'adhésion sur le bois
- Propriétés mécaniques: modules, résistances traction, flexion, compression, chocs, cisaillement
- Vérification par des tests mécaniques et de vieillissement accéléré
- Thermiques : Evolution du taux de réticulation par l'analyse de la température de transition vitreuse, optimisation du cycle de post-cuisson
- Réactivité: temps de gel, température maximum d'exothermie, temps de séchage en film
- Résistance chimique, au feu, à l'abrasion, aux ultraviolets
- -Thixotropie: amélioration de la tenue en parois verticales d'un revêtement liquide
- Aptitude au débullage
- Qualité de surface du film durci: tendu, brillance, pollution en fonction de la température ambiante et de l'hygrométrie

Théorie du collage du bois à l'époxy

Il n'y a pas très longtemps encore, la seule théorie du collage que l'on admettait, reposait sur la pénétration de la colle dans les pores des matières à assembler. La réaction chimique du liant engendre son durcissement sous forme de tentacules qui, à la manière des doubles crampons, maintenaient les deux pièces en un contact intime et dont la résistance à l'arrachement pouvait être d'autant plus grande que la pénétration de la colle était profonde. Tout ceci impliquait donc la porosité des matières et une colle suffisamment liquide et mouillante pour lui permettre, soit par simple capillarité, soit par pression, une pénétration dans toutes les anfractuosités ouvrant sur la surface des plans de collage.

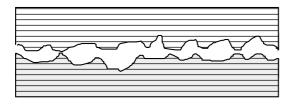
Cette action adhésive était désignée sous le nom d'adhérence mécanique, et si elle est encore valable aujourd'hui pour certaines matières dont le bois, il n'est pas possible d'appliquer cette théorie aux collages de corps métalliques dont les surfaces sont lisses et imperméables à toute pénétration d'une colle. On favorise donc l'adhérence mécanique par saturation des canaux du bois par la pression exercée sur la surface (lamellé collé), en employant la technique du vide et de l'autoclave. Dans la construction bois époxy, les pressions appliquées sont faibles: les pièces sont maintenues en contact pendant le durcissement. La pénétration de la résine est fortement liée à la texture du bois, sa densité, en bois de bout ou de fil. Les canaux et les parois des cellules du bois accepteront un volume d'autant plus grand d'adhésif, que l'humidité du bois sera faible. On considère que ce taux doit être inférieur à 12 %.

Avec l'évolution des techniques de chimie analytique, atomique et moléculaire une nouvelle théorie est née: l'adhérence spécifique. Valable pour les métaux, cette nouvelle théorie complète heureusement celle de l'adhérence mécanique permettant de réaliser avec succès des assemblages mixtes: bois / métaux, bois / matières plastiques. La matière est constituée par des atomes qui, par agglomération, donnent naissance aux molécules. Atomes et molécules sont rendus solidaires par des forces électriques interatomiques ou intermoléculaires, qui donnent à la matière son état physique.

L'adhérence spécifique qui étudie ces forces, implique donc une certaine action de ces forces entre les molécules de la colle et celles de la substance à coller. Celles-ci suivant la nature de la matière, sont polaires ou apolaires et correspondent à la distinction que l'on fait entre les liquides hydrophiles et les liquides hydrophobes.

Les molécules d'un corps polaire sont caractérisées par la présence de fonctions organiques du type alcool ou hydroxyle (OH), amine (NH₂), époxy, acide carboxylique (COOH), aldéhyde (COH) ... Ces fonctions organiques sont présentent dans le polymère durcit et dans les constituants végétaux (lignite et cellulose). La résine époxy et les cellules lignifiées du bois sont de même «nature» chimique, donc compatibles du point de vue polarité. Les fonctions organiques peuvent aussi réagir entres elles et créer des **liaisons chimiques**.

Quant aux produits apolaires, ils ont pour prototypes les hydrocarbures extraits de la houille ou du pétrole et certains dérivés du type polyéthylène, polypropylène. L'exemple le plus connu est le cas de l'eau et de l'huile: ces deux liquides n'ayant pas la même polarité, n'ont aucune affinité l'un pour l'autre et ne peuvent constituer un mélange homogène. On admet alors facilement que des actions similaires existent entre un liquide adhésif et une matière solide: bois, métal, plastiques, etc. D'un point de vue pratique: les surfaces à coller seront propres et exemptes de traces de gras.


La majeure partie de la résistance d'un joint étant due à l'adhésivité spécifique, il parait évident que le collage de deux morceaux de bois, fortement polaires par nature, sera plus facile que le collage du bois sur une plaque de métal qui lui est apolaire, c'est-à-dire hydrophobe, et qui devra être rendu hydrophile ou polaire par des traitements spéciaux (acides) afin d'adhérer au bois.

Cette attraction intermoléculaire étant ainsi définie et constituant une certaine affinité entre les différents corps, de nombreux facteurs peuvent modifier cette force attractive.

Le collage ne peut réussir que si les molécules superficielles du plan de collage n'ont subi aucune modification physique ou chimique et n'ont pas été souillées par des corps étrangers modifiant leur polarité (graisses, gasoil, silicones, peintures, vernis...)

De plus pour rendre le plus intime possible le contact du bois et de la colle, condition essentielle pour obtenir un joint solide, la pression est nécessaire. Elle complète le phénomène d'adhérence spécifique, mais doit être excercée avec précaution pour permettre une pénétration suffisante de l'époxy et éviter de réduire l'interface à une épaisseur trop faible, pouvant aller jusqu'à l'élimination presque totale de l'adhésif. Pour cette raison lors de toutes les opérations de collage bois / bois, on incorporera au mélange résine / durcisseur, de la microfibre de bois **Treecell** ou du **Wood Fill 250**. On obtient alors une colle auto-remplisseuse (gap-filling).

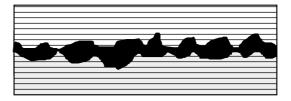


Schéma 2- Remplissage des imperfections de surface du bois par la résine chargée de microfibres Treecell

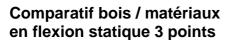
Un adhésif est par définition un matériau non métallique pouvant assembler des éléments par adhérence. Par ce processus, la structure des éléments à assembler est inchangée.

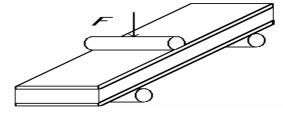
Dans l'assemblage de deux matériaux, la résistance finale dépend:

- du substrat
- de l'adhésif
- des interfaces

La résistance globale du système est alors déterminée par la plus faible des trois. La résistance maximale d'un assemblage est atteinte avec la rupture du substrat, de la couche adhésive ou aux interfaces. L'adhésion totale dépend des forces d'assemblage. elles sont déterminées par l'adhésion: ancrage mécanique, forces électriques entre les fonctions organiques, liaisons chimique entre la colle et le support et la cohésion des constituants. Par leur haut pouvoir adhésif et leur cohésion, les joints de colle à base de résines époxydes spécifiques, sont plus résistantes en traction et cisaillement que le bois dans le sens axial (Tableau 2 et 3). D'autre part une résine est isotrope alors que le bois a une résistance "quasi unidirectionnelle"

Matériaux	Densité moyenne	Contrainte maximum de	Contrainte maximum de
		traction perpendiculaire au fil	cisaillement parallèle au fil du
		du bois	bois
	Kg / m³	MPa	MPa
Frêne	750	6.5	14
Pin d'orégon	500	2.5	8
Red cédar	350	1.5	7
SR 5550 / SD 550x	1110	60 - 70	20-30


Tableau 2: Propriétés mécaniques des bois et des résines époxydes



Comparatif bois / matériaux en traction

	<u>*</u>				
	Densité moyenne	Module	Contrainte maximum	Module spécifiques	Contrainte spécifiques
MATERIAUX	(Kg/m ³)	(MPA)	(MPA)		opeoquee
	() /	(1)	(2)	(3)	(4)
Acacia	750	23 500	100	31.4	0.13
Framiré	525	11 000	60	20.9	0.11
Frêne	750	10 100	63	13.5	0.08
Iroko	675	12 300	62	18.3	0.09
Niangon	690	11 500	81	16.6	0.12
Okoumé	450	14 000	72	31.1	0.16
Pin d'Orégon	500	15 100	63	30.1	0.12
Red cédar	350	7 000	25	19.9	0.07
Samba	400	10 100	68	25.0	0.17
UD Verre / polyester ⁽⁵⁾	1530	24 000	520	15.7	0.34
UD Verre / époxy (5)	1540	25 000	650	16.2	0.42
UD Verre / époxy (6)	2080	45 000	1250	21.6	0.60
UD Carbone / époxy ⁽⁶⁾	1530	134 000	1270	87.6	0.83
UD Aramide / époxy ⁽⁶⁾	1350	85 000	1410	62.9	1.04
Acier	7800	205 000	1000	26.3	0.12
Aluminium AU 4G	2800	75 000	450	26.8	0.16

MATERIAUX	Densité moyenne (Kg/m³)	Module (MPA)	Contrainte maximum (MPA)	Module spécifique	Contrainte spécifique
		(1)	(2)	(3)	(4)
Acacia	750	13 800	175	18.5	0.23
Frêne	750	12 300	140	16.4	0.19
Red cédar	350	5 400	70	15.3	0.20
Sipo	625	12 300	118	19.7	0.19
UD Verre / polyester (5)	1530	19 000	500	12.4	0.32
UD Verre / époxy (5)	1540	24 000	600	15.6	0.39
UD Verre / époxy (6)	2080	46 000	1000	22.1	0.48
UD Carbone / époxy (6)	1530	78 000	1570	51.0	1.02

- Module à épaisseur équivalente (1 MPA = 1 N/mm2)
- Résistance max. à épaisseur équivalente (1 MPA = 1 N/mm2)
- (1) (2) (3) Le module spécifique est le rapport : Module / masse volumique.
 - Cette valeur compare les matériaux entre eux à masse volumique équivalente.
- (4) La résistance spécifique est le rapport : Résistance maximum / masse volumique.
- Cette valeur compare les matériaux entre eux à masse volumique équivalente. Stratifié réalisé au contact avec un taux volumique de fibre unidirectionnelle (UD) de 30%.
- (5) (6) Stratifiés réalisés sous vide avec un taux volumique de fibre unidirectionnelle (UD) de 60%.

Performances mécaniques du bois comparées aux matériaux composites

Le tableau 3 illustre parfaitement l'intérêt du bois en tant que matériau performant.

Le bois est tout d'abord de 2 à 6 fois plus léger que les matériaux composites renforcés de fibres.

En traction et flexion, le module ou rigidité et la contrainte maximum permettent de comparer les matériaux pour une **épaisseur** équivalente: par exemple, 10 mm de stratifié d'unidirectionnels verre / époxy au contact sont 2 fois plus rigide que 10 mm d'Iroko et 10 fois plus résistants en traction.

L'utilisation des bois légers est évidente dans le sens du fil en tant que matériaux d'âme, dans des structures composites bois / fibres-époxy.

Le renforcement par fibres d'un bordé:

Nombreux sont les cas de figures où il est nécessaire de renforcer le bois par l'imprégnation de tissus de fibres verre, carbone ou aramide à l'aide de résines époxydes. La conception et la structure du bateau dicte l'emploi de ces renforts. Nous distinguons deux cas:

- La structure a été dimensionnée en utilisant les performances pures du bois:

Il s'agit des constructions traditionnelles à restaurer ou d'unités fabriquées selon les techniques du bois moulé. On cherche alors à améliorer les qualités de surface du bordé. Le bois est relativement peu résistant aux chocs, en comparaison d'un composite verre / époxy. Sur les bateaux où seul le bois est structurel, on vise donc, par la stratification, l'amélioration de la résistance à l'abrasion et aux chocs. Les performances mécaniques et l'étanchéité de cette peau ont aussi deux autres influences: elles annulent l'apparition des fissures engendrées par les variations hygrométriques du bois et servent de support stable aux enduits et peintures de finitions. Le grammage des fibres employées est proportionnel au dimensionnement du bordé. Une couche verre E de 200 g/m² environ, apporte rigidité et protection considérable à un canoë en lisse jointive. cependant une couche de 300 g/m² ne contribue que très légèrement à la résistance et à la rigidité d'une coque en bois moulé constituée de 4 à 5 plis de 3 mm d'épaisseur.

L'application sans coulure des systèmes époxydes sans solvant est délicate en parois verticales. Après 2 à 3 couches de résine pure sur un bordé, la surface peut ne pas être parfaitement lisse, l'épaisseur totale des couches déposées étant variable. On devra donc poncer ces irrégularités avant les enduits de finition. Sans expérience, cette opération comporte le risque de revenir au bois et donc de supprimer par zones l'avantage de l'époxy. Une couche d'imprégnation suivie d'une stratification dans "la foulée" d'un tissu de faible grammage, calibre l'épaisseur de la protection. Les lais de tissus sont posés bord-à-bord, limitant ainsi les sur-épaisseurs. L'étape de ponçage, nécessaire à l'accrochage des enduits de finition, peut être annulée en appliquant sur le stratifié un tissu de délaminage. Le «Peeltex» est un tissu de Nylon non siliconé, destiné à faciliter la mise en œuvre et à améliorer la qualité des stratifiés. Ce tissu présente la particularité de ne pas adhérer à l'époxy et se délamine du stratifié après le durcissement de la résine, même après plusieurs semaines. Si les travaux sur le bordé sont suspendus pour quelques mois, on a intérêt à peindre le Peeltex avec une peinture glycérophtalique blanche pour prévenir le vieillissement dû aux ultraviolets.

- Le bois est utilisé en tant que matériau d'âme:

La structure d'un bateau présente un problème mécanique unique. Elle requiert un bordé qui supporte des charges importantes en flexion et une structure qui doit résister à de fortes contraintes ponctuelles. Mais compte-tenu de sa grande surface il doit allier légèreté, résistance et rigidité ,pour augmenter ses performances et sa longévité. Le problème de base dans la conception et la construction d'un bateau est que le poids du bordé est proportionnellement le plus important dans le poids total de l'unité. La rigidité de la coque peut être améliorée par l'accroissement de l'épaisseur de cette structure: c'est le concept de construction composite du type «sandwich».

L'influence de l'épaisseur et de la nature de l'âme en bois est démontrée par le modèle mathématique cidessous:

 $EI = E \times \frac{bh^3}{12}$

EI: Raideur de la poutre en flexion

E: Module de YOUNG

b: Largeur de la poutre

h: Hauteur ou épaisseur de la poutre

Cette relation montre que pour rigidifier un bordé, deux solutions sont possibles:

- Augmenter E par l'emploi de stratifiés hautes performances (Verre, carbone, aramide)

- Augmenter l'épaisseur h, qui est au cube dans la formule. Les impératifs de poids impliquent l'utilisation de matériaux d'âme à faibles densités: bois légers, mousses PVC, nids d'abeilles.

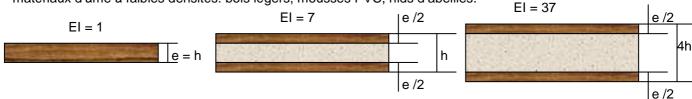


Schéma 3: Influence de l'épaisseur des panneaux sandwich sur la rigidité El en flexion

Dans les structures sandwichs, les contraintes normales dans les peaux diminuent en fonction du carré de l'épaisseur de l'âme. Cela augmente très rapidement la rigidité en flexion de la structure. Les contraintes normales dues à la flexion se concentrent dans les peaux. L'âme a un rôle primordial dans la cohésion de l'ensemble: elle empêche en particulier le flambage des peaux.

La flexion induit des contraintes de traction dans la peau inférieure, de compression dans la peau supérieure, et respectivement celles-ci ont tendance à se rapprocher de la fibre neutre (compression de l'âme) et à s'éloigner (traction de l'âme).

Le rôle du «cœur» d'une structure sandwich est donc de résister aux contraintes importantes d'arrachement, de compression et de cisaillement.

Autre paramètre important, les propriétés mécaniques du bois sont moins sensibles aux variations de température que les matériaux d'âme du type mousse de PVC. Pour une structure sandwich bois portée à 80°C, le cœur reprendra les efforts de compression et résistera très bien au flambage des peaux. L'emploi de renforts unidirectionnels ou de multi-directionnels cousus (multiaxiaux) stratifiés sur le bois (Tableau-4) permet de renforcer les zones de fortes contraintes à moindre poids ou d'optimiser des directions d'efforts.

Appellation et mode de Tissage	Sens des fibres par rapport à l'axe du bateau	Emplois dans les composites Bois / Epoxy
Unidirectionnel UD Fibres fixées ou cousue	· ·	En général, renforce l'axe du bateau (0°), lamell é collé, quilles
Taffetas, Sergé Tissés	0°/90°	Protection de surfaces de bordés en bois mo ulé ou CP. Renforce les lisses jointives des petites unités : canoës, voile aviron jusqu'à 5m, petits multicoques (carbone / Aramide)
Roving cousus LT Cousus	0°/ 90°	Intérieur des coques lisses jointives, san dwichs balsa bois de bout
Biaxiaux Bx Cousus	-45°/ +45°	Extérieur des coques lisses jointives, stratifiés sur joint-congés, restauration des bordés traditionnels, panneaux sandwichs pour cloisons structurelles, lamellé collé (résistance en torsion), soudure coque-pont
Triaxiaux longitudinaux TLx Cousus	09-459+45°	Extérieur des coques lisses jointives, constructions sandwichs balsa bois de bout. Lamellé collé, panneaux sandwichs pour cloisons structurelles
Triaxiaux tranversaux Ttx Cousus	-457907+45°	Posés à 90° ils renforcent le 0° des c onstructions lisses jointives Panneaux sandwichs pour cloisons structurelles
Quadriaxiaux Qx Cousus	0%-45%90%+45°	Constructions sandwich balsa bois de bout, zones à très fortes contraintes, panneaux sandwichs pour cloisons structurelles

Tableau 3: Types de fibres utilisées dans les composites bois

Les multiaxiaux: avantages technologiques, styles, références

On désigne par multiaxiaux, des plis de fibres unidirectionnelles cousues entres elles selon plusieurs directions. La référence étant l'axe du rouleau de tissu (0°), les multiaxiaux sont cousus selon:

2 directions: Bi-axial ou Longitudinal transversal 3 directions: Tri-axial longitudinal ou transversal

4 directions: Quadriaxial

Avantages:

- Plus résistant: les fibres sont parfaitement alignées et tendues (par rapport à un tissu tissé)
- Consommation moindre de résine: moins d'embuvage
- Plus facile à imprégner comparé à un tissu tissé de même grammage
- Economie de temps lors de la stratification: un seul tissu à poser de part et d'autre d'un sandwich
- Optimisation sur l'orientation des efforts

Orientations des fibres	X		***			
	-45° / +45°	-45° 0 +45°	-45°90°+45°	0°-45°90°+45°	0° 90°	0°
Références	Bx Biaxial	Tlx Triaxial longitudinal	Ttx Triaxial transversal	Qx Quadriaxial	Lt Longitudinal Transversal	L Unidirectionnel
	Style	Style	Style	Style	Style	Style
Verre E	254 318 424 446 590 602 802 936 1002 1202	583 751 895 1169	895 1227	610 868 1034 2336	566 850 1134	425 567
Carbone	340 440 624 800	976	530	720 1309		125 250 300
Aramide	514	555	550	737		
Verre E / Aramide	400					

Les tissus multiaxiaux "COTECH" en verre E peuvent être sur option, cousus sur mat de verre 100, 225 300 ou 450 g/m^2 .

Tableau 5: Styles et références des multi-axiaux COTECH

,

Les méthodes d'assemblages en bois / époxy

Conditions d'application des systèmes époxydes:

Les surfaces à coller doivent être propres et sèches et être maintenues dans cet état jusqu'à l'application de l'adhésif. L'humidité diminue le mouillage de la surface par l'époxy (sauf formulation spécifique). En principe, un collage doit être différé en extérieur par mauvais temps: pluie, froid, forte humidité de l'air.

La qualité d'un collage dépend des conditions de travail suivantes:

- température
- humidité de l'air
- propreté du poste de travail
- conditionnements maintenus fermés, surtout pour le durcisseur qui réagit avec le CO, atmosphérique
- qualité du dosage et du mélange des composants
- adhésif adapté au support, charges adaptées à l'utilisation finale
- bonne adsorption et mouillage
- pas de contrainte pendant le processus de prise
- durée de prise, pression
- durée de vie en pot

Conception d'assemblage collé

On admet en général que la résistance du joint croît de façon proportionnelle à la longueur de recouvrement, mais les essais indiquent que ce n'est nullement le cas. La résistance à la rupture croît avec le recouvrement jusqu'à une longueur de recouvrement optimale, mais devient moins importante ensuite. Un joint devrait être calculé de telle sorte que la résistance des substrats soit pleinement mise à profit. C'est le cas si la contrainte de traction dans le film de colle est égale à la contrainte d'allongement du matériau. Il s'agit de déterminer une longueur de recouvrement correspondant aux résistances optimales. En règle générale on adopte dans la pratique:

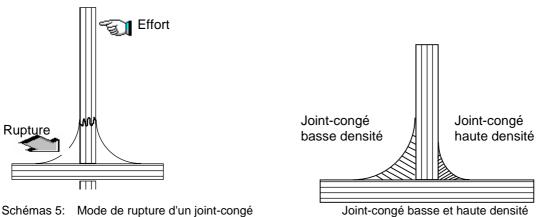
Bois faible densité: 8 à 10 fois l'épaisseur Bois haute densité: 12 à 15 fois l'épaisseur

Types d'assemblages:

L'application d'une force de traction induit des contraintes de traction dans le bois et de cisaillement dans le film de colle. L'allongement, variable le long de la surface de recouvrement, conduit à une répartition de la contrainte qui obéit à une loi hyperbolique. La force de traction exercée sur les deux extrémités du joint n'étant pas dans le même plan, l'assemblage est en plus soumis à un effort de flexion qui provoque des contraintes de traction normales à sa surface. Ces contraintes sont maximales aux extrémités du joint, et peuvent provoquer du pelage dans le cas de grandes longueurs de recouvrement.

	Bout à bout Petite surface de collage, résistance minime par rapport au substrat. Ne convient pas à la transmission des forces. A éviter
 Simple	Résistance moyenne. Préféré pour les sections faibles. Transmission des forces au recouvrement ,satisfaisantes sous contrainte normale.
Scarf	De bonne résistances peuvent être atteintes, même sous contrainte dynamique
Collage 2 faces	Excellente résistance
Double gradin	Excellent mais cher

Le joint congé


Son rôle, ses utilisations

C'est la méthode d'assemblage la plus répandue dans la construction navale moderne. Un joint-congé est constitué d'un système chargé appliqué dans l'angle formé par deux panneaux à assembler. Cette méthode est idéale lorsqu'on assemble des pièces qui se rencontrent selon des angles différents: cloison sur le bordé, liaison intérieure coque-pont, sièges, coffres...

Le joint-congé est réalisé par l'incorporation au mélange résine-durcisseur de charges renforçantes (Treecell-SiliceII) et/ou allégeantes (microsphères creuses-SiliceII); on obtient ainsi des mélanges «haute densité» ou « basse densité».

Par son dimensionnement (rayon, nature, stratifié ou non), l'assemblage par joint-congé soumis à une contrainte doit casser hors du plan de collage.

Le choix du couple résine - durcisseur est fait en fonction du rayon du congé et de la nature de la charge: plus le rayon est important, plus le durcisseur doit être lent. Les microsphères augmentent l'exothermie dans la masse par leurs pouvoirs isolants

bien dimensionné

Procédure de mise en œuvre :

Les parties à assembler sont ajustées et fixées provisoirement dans la configuration souhaitée (époxy durcissant en moins de 10 minutes SR 3' ou SR 10', clous, serre-joints, cales...).

Les surfaces destinées à recevoir le joint-congé sont dégraissées, poncées et dépoussiérées afin d'assurer une adhésion parfaite .Masquer par un ruban adhésif les limites du joint-congé : le nettoyage en fin d'opération en sera facilité. Imprégner au préalable le bois nu avec de la résine non chargée et appliquer le mastic sans attendre.

Enduire ou charger l'angle grossièrement avec le mélange résine / charges définies au moyen de spatule, sac plastique à coin coupé.

Mise en forme à l'aide de bâtonnet, dos de cuiller, spatule. à bout rond ayant le même rayon que le congé à réaliser. La taille est aussi contrôlée par l'angle de l'outil de lissage employé.

Finition :Dés le début de la polymérisation, enlever l'excédent de système chargé avec un outil tranchant (ciseau à bois, spatule). En exerçant une légère pression sur l'outil, on laisse une surface propre entre le congé et l'adhésif de masquage.

Oter les bandes d'adhésif avant la polymérisation de la résine.

Congé haute densité		Congé bass	se densité
Epaisseur du	Rayon du	Epaisseur du	Rayon du
contre-plaqué	congé	contre-plaqué	congé
4	15	4	20
5	18	5	25
6	21	6	30
8	25	8	40
10	28	10	50
12	30	12	60
15	32	15	75

Tableau 6: Rayons recommandés pour des congés à haute et basse densité en fonction de l'épaisseur du contreplaqué à assembler. Valeurs exprimées en mm.

Lorsque l'on recherchera des performances structurelles optimales, le joint-congé sera stratifié avec du tissu biaxial découpé en bandes plus larges que la surface du joint. On peut commencer à stratifier dès que le système commence à durcir. Cette solution permet de positionner le renfort en position verticale ou surplombante grâce au pouvoir collant (tack) de la résine en cours de polymérisation. Si cette opération est différée dans le temps, le joint-congé sera préalablement poncé et dépoussiéré avant la stratification.

Cette méthode est idéale du point de vue poids pour des joints basse densité à grand rayon.

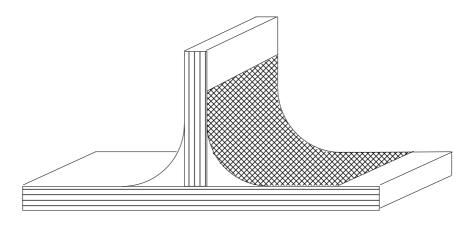


Schéma 6 : Joint-congé basse densité renforcé par un statifié Bi-axial (-45°/ +45°)

Les méthodes de construction

Diverses sont les méthodes qui peuvent être employées dans la construction navale moderne, mais toutes ont comme résultat une structure monobloc : une peau souvent d'un seul tenant et de moins en moins assistée par des membrures, mais qui arrive à absorber par elle-même les chocs et les contraintes de la navigation.

Le lamellé-collé

Dans la construction navale traditionnelle, les éléments de structure (quilles, lisses, barrots, membrures) étaient formés dans le bois massif, pliés à la vapeur ou obtenus par assemblage de bois sciés. Dans la construction moderne, ces éléments sont conçus à la forme désirée en collant plusieurs lamelles de bois maintenues sous pression jusqu'à la polymérisation de l'adhésif.

Règle d'or du lamellé-collé dans la construction navale: l'épaisseur des éléments composants le lamellé ne doit pas excéder **25 mm.** On utilise en général des lamelles de 4 à 12 mm d'épaisseur.

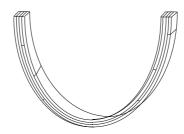


Schéma 7: Membrure en lamellé collé

Les avantages techniques sont évidents:

- Amélioration des performances mécaniques: le joint de colle est mécaniquement plus résistant que les cellules lignifiées du bois. Coller deux pièces de bois, c'est interposer un polymère adhérant parfaitement sur le support, reconstituant entres ces deux pièces des liaisons mécaniques supérieures à la pièce de bois unique. Le collage c'est la soudure, au sens métallurgique du terme.
- Les probabilités de rupture dues aux défauts du bois (nœuds) sont réduites par leurs dispersions et par correction des lamelles adjacentes.
- Le lamellé composite permet des conceptions optimisées avec par exemple des lamelles d'un bois plus résistant à la superficie, du bois de faible densité au centre, des renforts multidirectionnels... tout est envisageable.
- Réalisation facile et précise de formes complexes: le lamellé-collé permet la virtuosité plastique.
- Les lamelles sont sciées ou tranchées dans des pièces de bois souvent plus économiques, plus petites ou dans des chutes.
- Réalisation de grandes longueurs avec des lamelles relativement courtes
- Réalisation de pièces courbes à petits rayons par des lamelles de faibles épaisseurs
- Fiabilité dans le temps: résistance à l'humidité et aux bactéries améliorées par le joint de colle, vieillissement sans altération des performances techniques.
- Esthétiques: mariage des essences et couleurs

Conseils de mise en œuvre

Un lamellé collé est construit sur un gabarit de la forme désirée. Il est judicieux de faire un essai à blanc afin de vérifier que : - les lamelles préparées peuvent être cintrer à la courbure désirée,.

- le choix du durcisseur correspond avec le temps de mise en œuvre..
- les serre joints ,cales, polyane de protection sont préparés en quantité suffisante.

Le système adhésif et sa quantité utile sont déterminés par l'état de surface du matériau (bois poncé, scié, tranché..). Pour des pièces de structures lamellées, le mélange de résine sera légèrement épaissi avec des microfibres (**Treecell ou Wood Fill 250**), puis appliqué sur les deux faces en contact. Lorsque la pression de serrage est appliquée, un peu d'adhésif doit apparaître à chaque joint. Dans le doute, il vaut mieux appliquer trop d'adhésif que pas assez. La quantité sera contrôlée avec l'expérience acquise. Pour les calculs de consommation de résine, on prend en général 250 à 300 g/m².

La pression de serrage ne doit pas être excessive, mais bien répartie au moyen de cales sous les serre-joints. Enlever l'excédent de colle au moyen d'une spatule. La pression sera maintenue jusqu'au durcissement complet de la résine, et sera d'autant plus longue que le bois est contraint.

Bois moulé sur lisses

De provenance aéronautique, c'est le système le plus employé et qui s'adapte le mieux à n'importe quel type de bateau à l'unité. Le gabarit est une structure légère composée de couples, rigidifiés de longerons de bois résineux. Sur ce squelette on pose une première peau assez mince de contre plaqué qui sera le support des plis de tranchage. Rapide et simple dans sa réalisation, il offre un bon compromis entre poids et rigidité.

Construction des couples

On commence par tracer et découper les membrures dans du contre-plaqué marine enduit au préalable par deux couches de résine (*) Ces membrures sont aussi les cloisons du bateau. Pour mieux supporter la construction et lisser les courbes, il faudra interposer des couples provisoires découpés dans de l'aggloméré de 15-20 mm d'épaisseur.

Sur la circonférence des couples, on découpe les encoches pour la quille, les longerons et les bauquières. Si le traçage est très fiable(plotters échelle 1:1 ou découpe laser) les entailles sont faites avant le montage des formes, sinon il est préférable de monter les couples, vérifier et ajuster leur forme avec des longues règles souples, ensuite tracer sur place les encoches et les découper à la scie sauteuse.

Quille, longerons et serre-bauquières

Autrefois le chêne était le bois idéal de fabrication des quilles à l'herminette pour ses caractéristiques de bois dur, nerveux, performant en compression et flexion, très résistant aux environnements humides.

Aujourd'hui la pièce de quille est réalisée en lamellé collé, et on préfère comme bois l'acajou, beaucoup plus léger que le chêne. C'est un bois très facile à trouver sur le marché, facile à travailler et surtout ne posant pratiquement aucun problème de collage avec l'époxy.

Avec l'aide de plusieurs personnes on peut coller et serrer sur la forme la quille d'un seul tenant réalisée de plusieurs lames d'acajou de 10-12 mm d'épaisseur et collées avec un mélange époxy / Treecell.ou WF 250 La quille, en lamellé collé doit s'encastrer dans les emplacements prévus dans les couples, et peut être fabriquée au préalable sur un gabarit ou bien lamellée sur place.

Il faut protéger avec du polyane les membrures pendant le lamellé de la quille. Cela permet aussi de la sortir de son emplacement pour les opérations de nettoyage (disqueuse, rabot électrique).

la quille est définitivement collée aux membrures avec un mélange bien épais d'époxy / Treecell. ou WF 250 Les longerons de section rectangulaire d'environ 18-20 mm x 30-40 mm, ne sont pas réalisés en lamellé; ce sont donc des bois résineux à fibres longues et sans nœuds comme le pin d'Orégon ou le Spruce, qui sont fréquemment sélectionnés.

Les lisses sont scarfées avant le montage pour un meilleur lissage de la courbe longitudinale. Si dans certaines zones la courbe est assez importante et que le longeron risque de casser, on fend à la scie circulaire dans l'épaisseur de la lisse à partir de l'extrémité et on colle une lamelle de bois de l'épaisseur de la lame.

Sur les grands monocoques de 25-30m, la section des longitudinaux est bien plus importante: il faut les fabriquer en lamellé. Afin de gagner du poids, on peut très bien employer du Red cedar ou de l'Acajou. Les bauquières seront aussi en lamellé a cause de leurs sections plus importantes. Il faudra usiner les encoches pour poser les barrots du pont; le pin d'Orégon est presque toujours de rigueur même si le Spruce est accepté.

Pose du bordé

En raison de l'espacement entre les longerons (habituellement entre 20 et 30 cm) le premier pli est le plus délicat à poser et pour cette raison beaucoup de personnes préfèrent des bandes de contre-plaqué de 3 ou 4 mm, à du tranchage de la même épaisseur. Il est toujours préférable d'enduire au préalable la face du tranché ou du contre-plaqué visible a l'intérieur de la coque: travail à plat au rouleau.

Le premier pli sera collé aux membrures et longerons avec un mélange chargé au Treecell».

Pour les plis suivants un mélange moins dense d'époxy / Wood Fill 250 »sera plus adapté à l'énorme surface de contact pour si peu d'épaisseur. Les économies sur le volume de résine nécessaire à la construction et le gain de poids sont facilement démontrées.

Trois à quatre plis sont le minimum de couches que compose l'échantillonnage du bordé. Pour des plis de 3 à 4 mm, le bois est très souvent l'Acajou grand Bassam, qui se trouve couramment dans le commerce. Le Red cedar serait idéal pour sa faible densité, mais il est difficile de s'en procurer dans ces épaisseurs car il se tranche très mal.

(*) Voir wood impreg

Bois moulé sur lisses jointives

Le bordé est constitué par des lisses jointives de Red cedar, recouvertes par 2 à 3 plis venant de tranchage. Il s'agit d'une méthode très attrayante au point de vue finition intérieure grâce à ce bois très léger aux teintes nuancées (l'intérieur de ces bateaux étant d'ailleurs vernis).

Construction

Le Red cédar est avec ses couleurs variées, un décor de choix pour les parois internes du bateau. C'est la méthode des amoureux du bois, et celle qui demande le plus de connaissances en menuiserie. Pour garantir un résultat impeccable il n'y a pas de place à l'erreur. Il sera pour cette raison préférable de prévoir un nombre supérieur de couples pour obtenir un écartement plus serré que d'habitude. Les lisses jointives n'étant pas très épaisses(9 à 12 mm pour des coques de 10 à 13 m) le respect de la forme est lié à la quantité des supports sous les lisses.

Ecartements maximum des couples (en cm)	Epaisseur du bordé (en mm)
40	12
45	15
60	20
75	24

Tableau 7: Ecartement des couples en fonction de l'épaisseur du bordé.

Toujours par souci, de perfection, l'usinage des lisses doit être méticuleux et précis. Le sifflet du scarf des différentes longueurs doit être coupé dans la hauteur de la lisse et non dans son épaisseur. Il vaut mieux voir un joint diagonal, long et parfait, que une jonction verticale plus courte mais qui, à cause de la concavité du bateau ne pourra jamais rester un trait bien défini.

La rapport hauteur / épaisseur des lisses est définie en fonction de la surface plus ou moins courbe de la coque. Cette valeur est en général égale à 1,5. Ce rapport peut descendre dans des zones plus arrondies comme les retours de quille ou les fonds comme peut passer à 2.5 dans le bordé plan d'un catamaran ou près des livets de pont.

Les lisses seront mieux ajustés dans l'épaisseur, si on usine leurs champs en concave / convexe et si on les colle entre elles avec un mélange époxy / Glasscell ou Whitecell ou WF 250 (Schéma 8). L'exigence esthétique demanderait de la résine incolore thixotropée pour limiter les éventuelles tâches sur la peau interne.

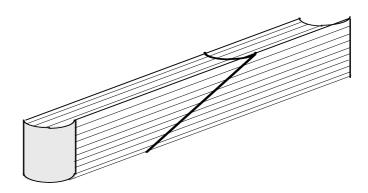


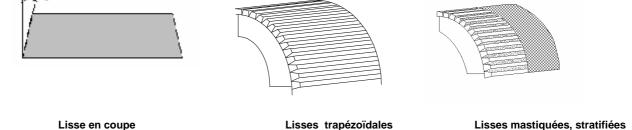
Schéma 8 - Lisse usinée en concave / convexe et scarfée

Normalement, deux plis de tranchés d' Acajou à + et - 45* de 3 à 5 mm d'épaisseur sont moulés sur le Red cédar. Pour une coque finition bois vernis, un pli longitudinal du meilleur tranchage sera collé sur l'ensemble. Pour ce type de construction très légère, un tissu de verre de 160 à 300 g/m² est souvent stratifié sur l'extérieur de la coque.

avec un Biaxial

Strip planking ou lisses jointives (Strip composite)

Le Strip planking est la méthode la plus rapide et facile des constructions sandwichs. Des lisses relativement épaisses d'un bois de faible densité constituent l'âme du sandwich. Posées à l'extérieur des couples pour former un mannequin mâle (parfois femelle), elles seront ensuite stratifiées des deux côtés.


Construction

Le bois le plus utilisé pour la réalisation des lattes est le Red cédar, pour son faible poids spécifique et de son prix très raisonnable, mais n'importe quel bois de faible densité est susceptible d'être employé. Il faut toutefois se méfier des bois trop nerveux ou pas secs qui bougeraient trop avant la complète stratification du bateau. Dans l'absolu, cette méthode demande l'apport d'unidirectionnels à 90° de l'axe du bateau, dans la pea u interne en guise de membrures et des UD à + ou - 45° comme peau externe pour apporter une composante en torsion. Cela comporte un temps de mise en œuvre assez long. Il est aujourd'hui préférable d'utiliser des biaxiaux (-45°+45°) posés à 90° de la coque où des triaxiaux longitudinaux (Tlx) à 90° qui sont encore plus efficaces pour améliorer la performance de l'ensemble. Finir le stratifié par la pose d'un tissu d'arrachage « Peeltex ».

L'astuce du trapèze

Le Strip planking étant une méthode rapide de construction «vite fait..bien fait", les astuces sont donc admises pour gagner encore plus de temps. Dans cette technique, les lisses sont habituellement emboîtées et collées après usinage concave /convexe,rainurage, bouvetage ,ou n'importe quel tenon/mortaise et cloués dans l'épaisseur pour exercer de la pression et pouvoir continuer a lisser. C'est la règle de l'art et cela prend du temps.

Autre solution: des lisses en forme de trapèzes sont clouées sans collage sur les couples, la base la plus large à l'intérieur de la coque. Le montage ainsi réalisé est d'une rapidité extrême. Entre deux lisses, il y aura toujours une fente ouverte de section triangulaire, même dans les parties planes du bordé.

Shéma 9 : Principe du montage Strip Planking avec lisses "trapèzes'

clouées sur couples

Avec une petite spatule, on remplit les fentes avec un mélange de résine chargée au Glasscell ou Whitecell.ou WF 130. Cette opération assemble par collage l'ensemble des lisses et permet l'extraction de leurs clous de fixation après la polymérisation de la résine. Cet enduit, cloisonne les lisses et limite les infiltrations d'eau en cas de choc.

A ce stade, la surface de la coque présente une multitude de facettes. Par ponçage il est facile de revenir à une surface apte à la stratification. Les tissus bi-directionnels (**Bx**) et tri-axiaux (**Tlx**) sont bien sûr préconisés. Finir les stratifiés par un tissu d'arrachage **Peeltex**.

Type de construction	Bois utilisé	Renfort type et positionnement par rapport à l'axe du batea Intérieur coque Extérieur coque	
Bois moulé	Acajou	non	Taffetas de 160 à 300 g/m² ou finition époxy / PU
Lisses jointives Strip planking	Red cédar Acajou	Bx à 90°	Bx à 90° ou LT à 90°
Sandwich	Balsa bois de bout	LT Tlx Qx	LT Tlx Qx
Contre-plaqué		Taffetas ou Sergé à 90° LT à 90°	Taffetas ou Se rgé à 90° LT à 90°

Les systèmes époxydes SICOMIN pour le bois

SICOMIN propose 3 systèmes époxydes pour le bois.

Les résines sont désignées par le sigle «SR» et les durcisseurs par «SD».

Le dernier chiffre de la référence durcisseur indique sa réactivité relative: 7 très rapide, 1 ultra lent.

Nous donnons dans le tableau 10 page 20, un résumé de sélection de produits en fonction des applications.

SR 5550 Le système de référence des professionnels et amateurs

Pièces structurelles de petites et grandes dimensions

Pièces fortement sollicitées: mâts, quilles, membrures, bordés...

Température d'utilisation: 15 ℃ à 25 ℃

Choix de 4 durcisseurs en fonction de l'application

SD 5505: Rapide Stratification et collage

SD 5504 Rapide Revêtement

SD 5503 Lent Stratification et collage

SD 5502 Très lent Stratification, collage et enduits

Diluant EP 217 pour dilution première couche dans les opérations de revêtement.

Dosage 3 / 1 en volume

SR 8450 Le système des grosses unités ou pour les pays chauds

Collage de pièces structurelles de petites et grandes dimensions, stratification,

Température d'utilisation: 20 ℃ à 40 ℃

Choix de 3 durcisseurs en fonction de la taille des pièces et des conditions météo

Dosage 2 / 1 en volume

Wood Impreg Revêtement époxy bi-composant, incolore, solvanté,pistolable pour l'imprégnation du bois et

dérivés.

Ne convient pas pour la stratification et le collage.

Sous couche, fond dur et revêtements esthétiques et décoratifs en intérieur. Recouvrabilité sans ponçage, (recouvrable minimum: 24 heures, maxi 6 jours,

En extérieur il sera protégé par un polyuréthane bi-composant.

Dosage 2 / 1 en volume

Sélection des systèmes époxydes et conseils de mise-en-œuvre

Opérations	SR 5550	SR 8450	Wood Impreg	Remarques et conseils
Performances mécaniques	多多多	\$ \$ \$	\$\ \$\ \$	Sur la résine pure
Résistance chimique en immersion permanente	PPP	REE	RR	
Collage du bois	多多多	多多多	8	Charger le mélange
Sensibilité aux basses températures et forte hygrométrie	**	*	**	Réaction de surface du durcisseur avec le gaz carbonique et l'humidité
Aspect de surface	$\Diamond \Diamond \Diamond$	≎⇔	\$\$\$	Meilleurs résultats à Ta > 23℃ et hygrométrie < 70%
Résistance aux ultraviolets	≎	≎	≎	En extérieur, protéger l'époxy avec vernis ou peinture Polyuréthanne
Durée de vie en pot / Temps de durcissement en film	22	22		Exprimé sur la résine seule
Utilisation en stratifié	\$\$\$	999	8	Faible grammage: SD rapide. Sous vide forte épaisseur: SD lent
Joint-congé basse densité	hhh h	PPP	8	Charge :Wood fill 130 Si le rayon est grand le durcisseur doit être lent
Joint-congé- haute densité		\$\$\$	8	Charge :Wood fill 250 Si le rayon est de faible dimension le durcisseur Peut être rapide.
Collage des ponts en Teck	hhh h	PPP	8	Charger le mélange avec Treecell/Silicell ou Wood Fill 250
Insert et filetage moulé époxy	999		8	Appliquer sur la vis à insérer un agent démoulant (cire 103, Cirex, paraffine)Incorporer au mélange R+D: Treecel-Silicell ou Treecell- Silicell-Fillite. Pour les fortes contraintes: noyer la avec un écrou métallique
Volume de coulée		PP PP	8	SD xxx1Pour des volumes supérieur à 5 litres: SR 8500 / SD 8601 ou SD 7160 Calage : CA 85

Tableau 10- Sélection des systèmes époxydes et conseils de mise en œuvre

Mémento des paramètres de mise-en-oeuvre

Systémes SR5550 SD550X	Dosage Poids 100/ (g)	Dosage Volume 100/ (ml)	Pot life Sur 500g à 20° (mn)	Pot life Sur 500g à 25° (mn)	Temps de Travail à 20℃ (h)	Tg1 Max (℃)	Viscosité Mélange A 20℃ (Cps)	Viscosité Mélange A 25℃ (Cps)
SD5505	29	33	12	6	2h00	65	1050	820
SD5504	29	33	18	11	2h30'	65	800	550
SD5503	29	33	29	18	3h30'	65	690	470
SD5502	28	33				65	600	480

Systémes SR8450 SD845x	Dosage Poids 100/ (g)	Dosage Volume 100/ (ml)	Pot life Sur 500g à 20° (mn)	Pot life Sur 500g à 25° (mn)	Temps de Travail à 20℃ (h)	Tg1 Max	Viscosité Mélange A 20℃ (Cps)	Viscosité Mélange A 25℃ (Cps)
SD845 4	45	50	50	42	3h30'	70	1500	1100
SD845 3	45	50	2h40'	1h50'	5h	76	1200	970
SD8451	45	50	9h	6h	10h	67	730	500

Propriétés mécaniques des systèmes non renforcés(1):

Systèmes	Module E	Résistance	Résistance	Résistance		
		traction	flexion	chocs		
	N/mm ²	N/mm ²	N/mm ²	KJ/m ²		
SR5550 /SD550.						
SD 5505	3000	68	100	26		
SD 5504	2850	64	102	40		
SD 5503	2810	63	105	39		
SD 5502	2480	60	93	30		
SR 8450 / SD 845	SR 8450 / SD 845 x					
SD 845 4	2600-3000	64-66	100-105	23 - 36		
SD 845 3	2500-3000	59-65	98-100	21 - 33		
SD 8451	2200- 2800	52- 61	86-90	24- 42		

Tableaux 9: Mémento des propriétés des résines.

^{(1):} Pour de plus amples informations, se rapporter à la fiche technique détaillée de chaque système

Conseils généraux de mise en œuvre des systèmes 5550 et 8450

Conditions d'atelier :

Poste de travail ventilé.

Température ambiante minimum pour le collage: 15℃

Température ambiante minimum pour le revêtement: 18 °C

Risques encourus en cas d'utilisation à trop basse température et forte hygrométrie: imprégnation du support insuffisant, consommation de produit excessive, durcissement lent, pollution du système.

Stockage:

Les conditionnements seront stockés à l'abri de l'humidité à 18-25°C. Refermer immédiatement les conditionnements après utilisation, notamment les durcisseurs qui réagissent avec le gaz carbonique et l'humidité. Les produits sont stables au moins un an en emballage d'origine.

Mise en œuvre:

Le dosage peut être pondéral (balance +/- 1g) ou volumique (gobelets gradués, seringues). Mélanger intimement les 2 composants.

Transvaser dans un récipient large et ouvert: bacs secs et propres. Les résultats obtenus sont directement liés à la précision et au soin apporté aux opérations de dosage et de mélange.

Refermer systématiquement les conditionnements afin de préserver l'intégralité des propriétés physicochimiques des composants.

Nettoyage de l'outillage: MEK, Xylènes, EP 217 ou à défaut Acétone.

Préparation de surface:

Le bois sera sec (bois de qualité menuiserie), poncé et dépoussiéré.

L'adhésion de la résine époxy est supérieure sur un bois poncé que sur un bois raboté.

Surfaces déjà traitées à l'époxy: ponçage à sec, dépoussiérage.

Proscrire l'utilisation de solvant gras du type White spirit, leur préférer MEK,trichloréthyléne,acétone.

Eviter de souiller les surfaces avant les collages ou revêtements.

Respecter l'ordre des opérations: 1- Dégraisser

2- Poncer

3- Dépoussiérer

Imprégnation du bois:

Travailler à une température décroissante.

La première couche d'imprégnation peut être diluée avec le diluant EP N°217.

SR / SD 1 volume

Diluant EP 217 0.5 à 1 volume maximum

Conseil: Faire d'abord le mélange résine / durcisseur, bien mélanger, attendre avant de diluer:

5 minutes à 25 $^{\circ}$ C ou 10 minutes à 15 $^{\circ}$ C.

Diluer ensuite. Mélanger intimement pendant 3 minutes

Mouiller le support à traiter, l'épaisseur sera la plus fine possible afin de laisser les solvants s'évaporer rapidement. Outillage préconisé: spatule, rouleau à poils courts.

Attendre environ une demi heure et reprendre les opérations de stratification, de collage ou de revêtement.

Stratification de renforts tissés :

Les systèmes 5550 et 8450 sont adaptés à la stratification de fibres de verre sur le bois.

L'emploi du tissu de délaminage **Peeltex** en dernière couche limite les défauts de surface, supprime à 80% l'opération de ponçage avant enduit, collage ou reprise de stratification.

Adhérence inter-couches / surcouchage:

Travailler "humide sur humide".

L'adhérence inter-couches est optimale lorsque celles-ci sont appliquées avant le temps de hors-poussière (fonction du durcisseur, de la température et de l'humidité).

Si le surcouchage ne peut être réalisé dans cet intervalle, il faudra laisser polymériser jusqu'au lendemain et poncer la surface avant d'appliquer une nouvelle couche.

Collages structuraux:

Encoller à l'aide d'une spatule ou d'un pinceau.

Le système époxy de collage peut être chargé avec du **Treecell** ou du **Wood Fill 250**, afin d'augmenter sa viscosité et de combler les défauts de surface du bois.

Pour les collages sous contraintes, maintenir sous pression pendant:

36 heures si la température ambiante est de 15 ℃

24 heures si la température ambiante est de 18-20℃

16 heures si la température ambiante est de 25 °C.

Les charges s'incorporent toujours après le mélange de la résine et du durcisseur.

SR / SD	Treecell	Silicell	Wood Fill 250
1 volume	0.5 volume	0.2 à 0.5 volume	
ou			
1 volume			1 volume

Tableau 1- Proportions conseillées de charges pour les collages structuraux à base de 5550 ou 8450

Joint-congé:

Le joint-congé permet d'assembler des panneaux, il peut être renforcé par une bande de tissu bi-axial si les efforts structuraux le nécessitent.

- Joint-congé haute densité: incorporer au mélange résine / durcisseur la charge **Wood Fill 250** ou un mélange **Treecell / Silicell**
- Joint congé basse densité: incorporer au mélange résine / durcisseur la charge **Wood Fill 130** ou un mélange de microsphères creuses / **Silicell**

SR / SD	Treecell	Silicell	Wood Fill 250	Wood Fill 130
1 volume	0.5 volume	0.5 volume		
1 volume			1.5 volume	
1 volume				2 à 2.5 volume

Tableau 2- Proportions conseillées de charges pour les joint-congés à base de SR 5550 ou 8450

Revêtement en parois verticales:

Préférer 2 couches fines de SR 5550 / SD 550x à une couche épaisse ou dilution avec EP 217.

Autre solution: Wood Impreg

Finition "bois verni"

Le comportement du revêtement époxy est optimisé par un dosage et un mélange rigoureux des composants, des conditions d'applications non critiques, d'une réticulation à l'abri des UV et d'une stabilisation du polymère par un traitement thermique de 24 heures à 25-30℃.

D'après nos connaissances, nous préconisons sous nos latitudes:

Exposition 1 mois par an ou intérieur

Finition 100% époxy: 2 à 3 couches

La qualité de surface des systèmes **5550** ou **Wood Impreg** suffit largement dans de nombreux cas de figures.

Exposition 4 mois par an:

Coque: Sous-couche époxy + vernis polyuréthanne **Seatop PU 360** sur les parties non immergées,

peinture époxy et anti-fouling sous la flottaison.

Intérieur: Finition époxy ou époxy + polyuréthanne.

La couche d'époxy est dépolie au 180 ou 240 à sec.

Appliquer plusieurs couches du vernis Seatop PU 360.

Protection "usage intensif"

Constructions contre-plaqué, bois moulé, bois latté, lamellé collé

Préparation de surface avant mise en peinture:

Sur bois: 2 couches d'imprégnation de résine époxy. Ponçage avant peinture

ou

Sur stratifié époxy / Peeltex: enduire les défauts de surface avec une résine chargée au Mix' Fill .

Ponçage avant peinture

Oeuvres mortes:

- 2 à 3 couches de peinture époxy Seacoat EP 215 HB
- 1 couche d'apprêt garnissant pistolable (époxy ou PU). Ponçage
- 1 à 2 couches de finition peinture polyuréthanne

Oeuvres vives:

- 3 à 4 couches de peinture époxy Seacoat EP 215 HB
- 1 couche d'interface type vinyl aluminium, caoutchouc chloré ou brai époxy
- 2 couches de peinture anti-salissure (Anti-fouling)

Intérieur:

- Au dessus de la flottaison : 1 à 2 couches de peinture époxy Seacoat EP 215 HB

1 couche de finition de peinture polyuréthanne

- Dans les fonds : 1 à 2 couches de SR 434 / SD 4341

NB: Ces préconisations ne sont pas applicables aux constructions traditionnelles (bordé calfaté).

Consulter les fiches techniques des peintures, respecter les temps de surcouchage et les épaisseurs de films préconisés. Eviter d'appliquer une peinture polyuréthanne sur les zones immergées.

Coulée de résine chargée

Plus l'épaisseur est importante, plus le durcisseur doit être lent.

Les microsphères creuses sont isolantes: la température d'exothermie sera plus forte.

Utiliser le durcisseur lent SD 8451 systématiquement pour des épaisseurs supérieures à 1 cm.

Les époxydes peuvent être chargés avec un grand nombre de produits à condition qu'ils soient:

- non gras
- secs
- chimiquement compatibles

Type de charge	Exemple d'utilisation	Epaisseur maxi à 20℃
- Microsphères	Remplissage	5 cm
- Fillite	Calage tube d'étambot	5 cm
- Sable de rivière ou plomb de chasse	Calage de lest	10 cm

Stockage

Les conditionnements seront stockés à l'abri de l'humidité à 18-25℃. Refermer immédiatement les conditionnements après utilisation, notamment les durcisseurs qui réagissent avec le gaz carbonique et l'humidité. Les produits sont stables au moins un an en emballage d'origine

Conseils d'applications

Bien lire les notices techniques

Ne pas incorporer de produit inconnu dans le système époxy sans essai préalable (Nous consulter) Effectuer de petits essais de mise en œuvre

Préparer de petites quantités de résine: 400 g maximum par unité de mélange

N'utiliser que des pinceaux et récipients secs, propres, sans gras ni peinture.

Nettoyage de l'outillage: MEK (Méthyléthyl cétone), Xylènes, diluants pour peintures époxydes ou polyuréthannes, alcool à brûler.

Hygiène et sécurité d'utilisation:

Les résines époxydes peuvent être utilisées en toute sécurité en respectant certaines règles et précautions :

Le mélange résine / durcisseur est corrosif et peut irriter la peau ou les yeux en cas de contact. Le port de gants, lunettes de protection et tenue de travail adaptée est vivement recommandé. En cas de contact avec les yeux, rincer immédiatement et abondamment avec de l'eau, consulter un spécialiste En cas de contact avec la peau, laver immédiatement et abondamment avec de l'eau et du savon

Dans un atelier bien aéré et tempéré, la manipulation de résine ne nécessite pas d'appareil respiratoire. Toutefois, en cas de ventilation insuffisante, de travail en milieu confiné, ou pour les personnes ayant des problèmes respiratoires, il est vivement conseillé de porter un appareil muni d'une cartouche pour vapeurs organiques A2B2 ou d'extraire les vapeurs.

Porter un masque à poussière pour les opérations de ponçage.

Ne pas fumer, boire ou manger dans les zones de préparation et d'application des résines époxydes.

Ne pas se laver les mains avec du solvant.

Lire les consignes sur l'étiquette collée au dos de chaque conditionnement.

Pour de plus amples informations, consulter les fiches d'hygiène et de sécurité complètes de chaque composant.

Nature et fonction des charges

Il est primordial de bien mélanger la résine au durcisseur avant d'incorporer les charges.

Microsphères creuses allégeantes

Whitecell: Copolymère thermoplastique blanc

Très basse densité apparente. Très basse densité des enduits de finition. Faible granulométrie. Facilité d'application (onctuosité, homogénéité, lissabilité) et de ponçabilité. Idéal pour les constructions hyper-légères, joint-congés très légers à stratifier.

Résistance chimique limitée au contact des solvants: Méthanol, Ethyl acétate, MEK, Acétone

Résistance thermique: 100℃ en continu

Incorporation à la résine long et délicat (Volatile)

Microballons Phénoliques: Microsphères creuses phénoliques de couleur brune

Mélange à la résine plus aisé que le Whitecell. Applications structurelles: mousses syntactiques, collages, joint-congés de couleur brune se confondant avec le bois. Facilité d'application (onctuosité, homogénéité, lissabilité) et de ponçabilité.

Maintenir les emballages hermétiquement clos

Glasscell: Microsphères de verre creuse blanche

Facilité de mélange, d'application et de ponçabilité. Fonction de remplissage par augmentation du volume de résine applicable. Enduits: allègement avant stratification de mousses alvéolaires, finition avant mise en peinture. Utilisé pour le collage des bois tendres. Mousse syntactique ayant de bonnes valeurs en compression. Performances mécaniques et inertie chimique.

Fillite: Microballons creux de silicate d'aluminium

Facilité de dispersion, bonne dureté et rigidité des moulages. Utilisée pour mastics grossiers, réagréage de surface, isolation thermique et phonique, volumes de remplissage.

Excellente résistance en compression. Hautes performances mécaniques et inertie chimique.

Charges formulées prêtes à l'emploi

Mix Fill 30: Charge pour enduits à poncer

Charge formulée à base de microsphères pour fabrication d'enduit époxy de moyenne granulométrie facile à poncer.

Permet de gagner du temps lors des enduits de finition: une seule charge à incorporer, consistance reproductible. Economiquement très intéressant par rapport aux enduits époxydes chargés et prêts à l'emploi. Permet de rattrapper des défauts de 3 cm de creux (spatules, longues règles).

Mix Fill 10: Charge pour enduit à poncer

Tendre,facilité de ponçage,granulométrie fine.Emploi avant les apprêts polyuréthannes Encrasse très peu les abrasifs,poussière non collante

Wood Fill 250: Charge très polyvalente pour joint-congés et le collage du bois

Poudre beige devenant "couleur bois" après mélange avec la résine. S'utilise pour la réalisation de joint-congé "haute densité", le collage du bois... Excellentes propriétés mécaniques.

Wood Fill 130: Charge pour joint-congés

Poudre blanche pour joint-congé de faible densité.

Microfibre de bois

Treecell: Microfibre de bois (cellulose de bois pulvérisée)

Poudre blanche pelucheuse. Utilisée avec les systèmesSR 5550 ou 8450 en tant qu'adjuvant structurel. Excellentes propriétés épaississantes et de remplissage des plans de collage du bois. Pour les joint-congés haute densité, à combiner avec du Silicell pour améliorer le lissage et la thixotropie.

Agent de thixotropie

Silicell: Silice colloïdale pyrogénée

Agent épaississant et de thixotropie (améliore la tenue en parois verticales) Incorporé dans les systèmes époxydes, il augmente la viscosité, l'adhérence initiale (tack), la vitesse de collage et maintient en suspension les charges au cours de la gélification.

Hygroscopique: maintenir les emballages hermétiquement clos.

Proportions des charges dans la résine

Charges	Densité	Poids	Volume	Densité
	apparente	min. – max pour	min. – max pour	maximum des
		100 g de (R + D)	100 ml de(R + D)	mélanges
		, , ,	` '	chargés (g/l)
Whitecell	36	2 - 7	120 - 190	370
Glasscell 25	140	5 - 25	30 - 200	600
Phénoliques	104	7 - 35	60 - 320	500
Fillite	350	30 - 110	85 - 320	730
Mix Fill 30	310	40 - 100	130 - 320	600
Mix Fill 10	100	24-30	240-300	660
Wood Fill 250	250	20 - 80	80 - 320	1080
Wood Fill 130	130	20 - 50	150 - 380	770
Treecell	80	5 - 17	40 - 210	1150
Silicell	50	3 - 9	60 - 180	1170
Poudre de graphite	415	20 - 70	50 - 170	1360

Taux de charge mini-maxi incorporable dans un système de résine ayant une viscosité de 800 Cps à 20℃.

Les charges **SICOMIN** ne constituent pas une base initiatrice aux maladies professionnelles. Cependant, les mêmes précautions que celles concernant la manipulation des poudres et poussières doivent être prises, afin d'en éviter l'inhalation et l'accumulation de charges électrostatiques.

^{*:} R+D Mélange Résine et Durcisseur

Produits de finition

FULL GRIP "Deck Line"

Le "Deck Line" de la gamme Full Grip, est un système polyuréthanne bi-composant.

Il est destiné à la réalisation de revêtements souples, imperméables, antidérapants, anti-vibratoires, insonorisants pour les ponts de bateau et toutes surfaces antidérapantes en extérieur.

Performances:

- Facilité d'application
- Longue durée de vie en pot mais séchage rapide du film
- Ne bulle pas au contact de l'humidité
- Excellente tenue au vieillissement en extérieur
- Antidérapant très efficace
- Très haute résistance à l'abrasion et aux chocs, 180 % d'allongement
- Résistance chimique envers les hydrocarbures et les milieux aqueux
- L'adhérence est très souvent optimisée par l'application de primaire Seacoat PU 228 HB ,ou.autres
- nous consulter

Mise-en-oeuvre:

Le Full Grip "Deck Line" s'applique comme une peinture à l'aide de rouleaux à poils longs :

Nous préconisons un minimum de 3 couches.

Poids total de matière humide appliqué: 700 g/m² Poids du revêtement sec: 500 g/m²

Epaisseur sèche: 0.65 mm environ

Pistolage possible: voir fiche technique

SICTANE 010

Le **SICTANE 010** est un mastic polyuréthanne mono-composant polymérisant par l'humidité ambiante. Il est destiné à la réalisation de joints de dilatation des ponts en teck, assemblages souples, joint-congés.

Présentation:

Cartouches aluminium serties de 310 ml ou boudins, couleur blanc, gris, noir

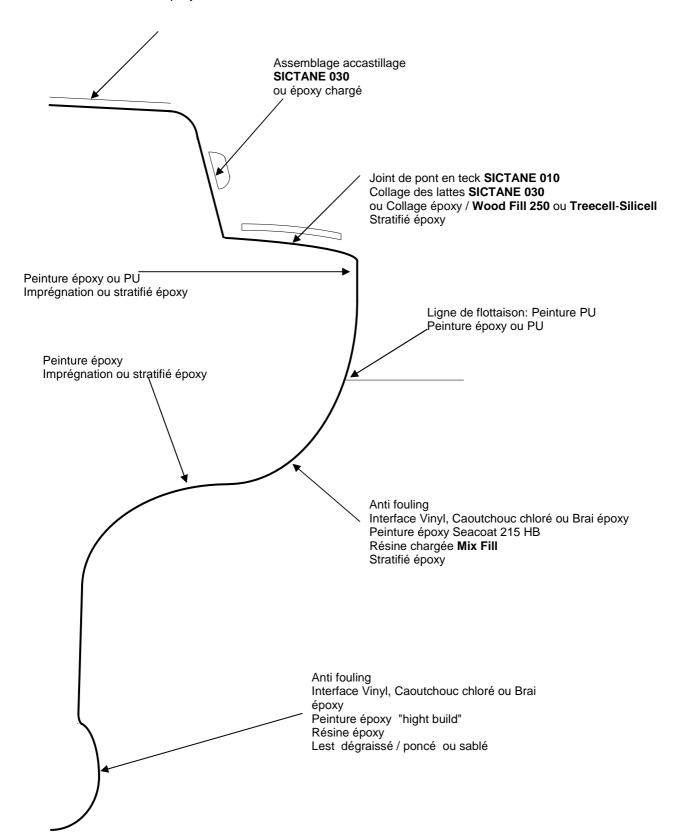
Performances:

- Souplesse permanente (450 % d'allongement)
- Etanche
- Résistance aux chocs, absorbtion des vibrations
- Résiste aux fortes variations de température: 30 à + 80 ℃
- Excellente tenue aux rayonnement ultra violet et ambiance marine
- Peut être peint
- Ponçable
- Ne mousse pas, ne bulle pas
- L'adhérence du **SICTANE 010** est excellente sur la plupart des matériaux: bois, acier, inox, acier chromé, aluminium anodisé ou non, stratifiés polyesters et époxy.
- -L'adhérence est optimisée par l'application de primaire PU mono-composant SICOPRIM PU 115

SICTANE 030

Le SICTANE 030 est un mastic polyuréthanne mono-composant polymérisant par l'humidité ambiante. Il est destiné au collage et la finition

Présentation:


Cartouches aluminium serties de 310 ml ou boudins, couleur blanc, gris, noir

Performances:

- Souplesse permanente (700 % d'allongement)
- Etanche
- Résiste aux chocs, absorbe les vibrations
- Résiste aux fortes variations de température: 30 à + 90 ℃
- Excellente tenue au rayonnement ultra violet et ambiance marine, huiles, graisses
- L'adhérence du **SICTANE 030** est excellente sur la plupart des matériaux: bois, acier, inox, acier chromé, aluminium anodisé ou non, stratifiés polyesters et époxy.
- L'adhérence est optimisée par l'application du primaire SICOPRIM PU 115

FULL GRIP "**Deck Line**" Résine chargée Mix' Fill Stratifié époxy

Les essences de bois utilisées en construction bois / époxy

Acajou ou acajou de Bassam, N'Gollon, African mahogany (Khaya ivorensis)

Provenance: Côte d'Ivoire, Cameroun, Gabon, Ghana, Nigéria

Description: Bois de coeur brun-rose à rouge foncé, reflet satiné. Grain mi-fin, contre-fil plus ou moins accusé et

régulier. Souventfiguré Aubier mince de 3 à 7 cm, blanc-rosé.

Densité: 0.45 à 0.55 Dureté: Tendre et léger

Rétractabilité: Retrait total moyen, peu nerveux

Propriétés mécaniques: Résistances mécaniques moyennes. Elastique, résistant aux chocs. Bonne cohésion transversale

Propriétés technologiques: Travail facile avec tous les outils, les clous et vis s'enfoncent et tiennent bien. Bois de cœur movennement durable

Applications marines: Quille et membrures en lamellé collé, tranché pour les bordés en bois moulé,

Acacia ou Robinier (Robinia pseudacacia)

Provenance: Originaire de l'Est des Etats-Unis. Planté et naturalisé en France (toutes régions).

Description: Bois jaune verdâtre à l'état frais, brunissant à la lumière. Hétérogène. Grain grossier, fil assez droit. Aspect flammé

sur dosse. Aubier étroit, gris jaunâtre.

Densité: 0,75 à 0,80 Dureté: Bois très dur.

Rétractabilité: Fort retrait, très nerveux.

Propriétés mécaniques: Très bonnes résistances axiales; élastique et résilient.

Propriétés technologiques : Aptitude moyenne au sciage; se cloue difficilement. Séchage lent avec tendance à se déformer.

Apte au cintrage. Bois de cœur très durable. Equarrissages de faible volumes. Noircit au contact de

l'humidité

Applications marines: Membrures pliées à la vapeur

Balsa (Ochroma lagopus)

Provenance: Amérique centrale et tropicale.

Description: Bois brun pâle, aspect lustré. Grain grossier, droit fil. Aubier distinct, blanc légèrement rosé.

Densité: 0,09 à 0,14.

Dureté: Le plus léger et le plus mou des bois commerciaux.

Rétractabilité: Faible retrait, peu nerveux.

Propriétés mécaniques:

Propriétés mécaniques:

Très faibles résistances mécaniques en valeur absolue, mais assez bonnes pour son poids.

Bois très tendre présentant quelques difficultés d'usinage. Ne tient pas les vis. Altérable.

Applications marines: En bois de bout, matériaux d'âme sandwich pour sa résistance en compression. En bois de fil, modélisme

Chêne (Quercus pedunculata)

Provenance: Toute l'Europe, régions de plaines et de moyenne altitude en France (sauf Midi méditerranéen)

Description: Bois de cœur jaune brunâtre ou fauve clair, fonçant à la lumière, fortement maillé sur quartier. Grain grossier, fil droit.

Structure hétérogène. Aubier distinct blanchâtre

Densité: 0.65 à 0.80

Dureté bois mi-dur à dur, retrait total fort, bois nerveux

Propriétés mécaniques: Excellentes résistances mécaniques, (bois à croissance rapide). Résiste bien en compression, très bien en flexion, assez résilient. Adhérent, peu fissile dans le sens tangentiel, faible cohésion dans le sens radial (gros rayons) Propriétés technologiques: Quelquefois difficile à travailler si les accroissements sont trop larges. Séchage très délicat (Collapse). Se cloue, se visse, se colle sans difficulté. Finition aisée. Bois de cœur très durable, mais l'aubier doit être éliminé ou traité. Contient du tanin qui attaque le fer. Noircit à l'air et à l'humidité

Applications marines: Construction navale traditionnelle: quille, membrures et pièces de charpente

Douglas ou Pin d'Orégon / Sapin de Douglas (Pseudotsuga douglasii (P. Taxifolia)

Provenance: Importé de la côte occidentale des Etats-Unis et du Canada. Planté (reboisements) dans le Massif Central, en

Bretagne, etc.

Description: Bois de cœur jaune rosé ou brun rougeâtre, très hétérogène et veiné, résineux. Fil droit. Aubier distinct, pâle.

Densité: 0,50 à 0,65. Dureté: Mi-dur, mi-lourd.

Rétractabilité: Retrait total moyen à faible, assez peu nerveux.

Propriétés mécaniques: Le bois de couleur jaune (Côtes) a des résistances mécaniques supérieures à celui de couleur rouge (Montagnes). Résiste bien en compression, très bien en traction et en flexion. Assez fissile, peu adhérent, plutôt raide, assez résilient si accroissements entre 2 et 4 mm. Remplace souvent le pitchpin

Propriétés technologiques : Bois facile à travailler. La présence de gros nœuds peut rendre le sciage délicat. L'hétérogénéité très grande présente des inconvénients pour le rabotage (surface ondulée). Se cloue et se visse bien, mais il est recommandé de percer des avant-trous. Se colle bien. La finition n'est pas toujours impeccable (présence de résine). Bois de cœur assez durable. Applications marines: Serre bauquière, longerons du bois moulé, strip planquing non stratifié

Epicéa de Sitka ou Sitka spruce (Picea sitchensis)

Provenance: Importé de la côte occidentale des Etats-Unis et du Canada. Reboisement dans le Massif Central et en Bretagne Description: Bois de cœur crème-rosé, fonçant plus ou moins à la lumière, reflets argentés. Fil très droit, accroissements très serrés (0.5 à 2mm) parfois indentés. Poches de résines fréquentes. Aubier distinct, de couleur blanc-crême

Densité: 0.35 à 0.55 Dureté: Tendre et léger

Rétractabilité: Retrait total faible, assez peu nerveux

Propriétés mécaniques: Excellentes pour son poids. Très résilient

Propriétés technologiques : Bois assez facile à travailler. Une certaine tendance à l'arrachement des fibres lors du sciage. Le ponçage fin n'est habituellement pas recherché. Bois peu durable mais meilleur que le sapin. Construction aéronautique, âmes de ski

Applications marines: Mats, serre bauquière, lisse jointives, barrotage en lamelle collé, longerons

Frêne ou Fayard (Fraxinus excelsior)

Provenance: Toute l'Europe sauf la Méditerranée. Disséminé dans toutes les régions de la France: plaines, collines fraîches,

basses montagne

Description: Bois blanc jaune nacré. Fil droit parfois ondulé. Grain assez grossier. Structure très hétérogène. Fine maillure sur

quartier. Chez les vieux arbres, on rencontre le «cœur noir» (Frêne «olivier). Aubier non distinct

Densité: 0.65 à 0.75 Dureté: Dur, mi-lourd

Rétractabilité: Retrait total moyen à fort, moyennement nerveux à nerveux selon la vitesse de croissance

Propriétés mécaniques: Les bois à croissance rapide (cernés > 5mm) ont d'excellentes résistances mécaniques.

Résiste bien en compression, très bien en traction et flexion. Elastique et très résilient. Peu fissile, assez adhérent

Propriétés technologiques : Sciage assez difficile: encrassement des lames. Usinage facile. Se ponce et se colle bien,.

Bois non durable facilement attaqués par les vers

Applications marines: Membrures, avirons, barrotage, bras de catamarans en lamellé collé.

Okoumé ou Gaboon (UK) (Aucoumea klaineana)

Provenance: Gabon, Congo (Brazzaville), Guinée équatoriale.

Description: Bois de cœur rose saumon plus ou moins foncé. Grain mi-fin, contre-fil plus ou moins saillant. Bois à texture

homogène. Aubier différencié grisâtre, de 2 à 5 cm.

Densité: 0.40 à 0.50

Dureté : Très tendre et très léger.

Rétractabilité: Retrait total plutôt faible, peu nerveux.

Propriétés mécaniques : Assez faibles résistances mécaniques. Peu fissile.

Propriétés technologiques : Désaffûte rapidement les scies; se colle, se peint, se vernit facilement. Tient bien les clous et se

visse bien. Durabilité moyenne du bois de cœur, très putrescible, noircit à l'humidité

Applications marines: Én déroulé, c'est le plus utilisé en contre-plaqué

Iroko ou Kambala (Chlorophora excelsa)

Provenance: Côte d'Ivoire, Cameroun, Ghana, Nigeria, Congo (Kinshasa et Brazzaville)

Description : Bois de cœur brun jaune plus ou moins foncé, grain grossier, fibre assez enchevêtrée. Légèrement huileux au

toucher. Contre-fil donnant un aspect rubané sur quartier. Aubier différencié jaune pâle, de 5 à 6 cm.

Densité: 0,60 à 0,75 Dureté: Mi-dur et mi-lourd

Rétractabilité : Retrait total plutôt faible, moyennement nerveux.

Propriétés mécaniques : Bonnes résistances mécaniques. Résistance aux chocs moyenne, comparable à celle du chêne. Propriétés technologiques : usinage en général facile, sauf si contre-fil trop accusé. Prend un beau poli, difficile à peindre et coller si non préalablement dégraissé . Résistant aux pourritures et aux termites. Très durable. Aubier altérable à éliminer.

Applications marines: Esthétique ,peut substituer le Teck

Samba ou Ayous, Obéché (UK) (Triplochiton scleroxylon)

Provenance: Côte d'Ivoire, Cameroun, Ghana, Nigeria

Description : Bois de couleur blanc crème fonçant légèrement à la lumière. Parfois un léger contre-fil. Grain plutôt grossier.

Aubier non différencié.

Densité: 0,37 à 0,50

Dureté: Très tendre et léger

Rétractabilité: Retrait total faible, peu nerveux

Propriétés mécaniques : Faibles résistances mécaniques, mais assez résistant aux chocs.

Propriétés technologiques : Usinage très facile. Se peint et se colle très bien. Peu durable. Sensible à l'attaque des insectes et

au bleuissement, à protéger.

Applications marines: Moules perdus, longerons dans le motonautisme. Quelques constructions en lisse jointives

Doussié ou Afzelia, Lingué, Azodau, apa, m'banga.

Provenance : Afrique de l'ouest, Caméroun, Nigéria, Gabon

Description: Bois parfait brun clair à brun rouge. Aubier distinct blanchâtre. Grain plutôt grossier. Texture homogéne.

Densité: 0.7 à 1

Durabilité : Bois très durable.

Propriétés mécaniques : Bonnes propriétés mécaniques. Fissile.contrefil.bois odorant, usinage nécessitant des outils adaptés : lames

Stllitées et outillages au carbure de tungsténe.

Emplois: Menuiserie, ébenisterie, charpente, constrution navale, construction lourde (hydraulique).

Sequoia ou Redwood (Sequoia sempervirens)

Provenance : Importé de la côte occidentale des Etats-Unis (Californie)

Description : Bois de cœur brun rougeâtre, ressemblant au Western Red Cedar dans ses caractères généraux, mais à éclat plus

lustré. Grain fin. Fil droit. Aubier différencié blanc, très étroit.

Densité : 0,40 à 0,45 Dureté : Tendre et léger

Rétractabilité : Faible retrait, très peu nerveux.

Propriétés mécaniques: Légèrement inférieures à celles du pin sylvestre. Fissile et cassant aux chocs.

Propriétés technologiques : Se travaille bien, se colle de façon satisfaisante. Prend bien les clous et les vis, se vernit et se peint

bien. Bois de coeur extrêmement durable.

Applications marines: Identiques au Red Cédar

Sipo ou Assié / Utile (UK) (Entrando-phragma utile)

Provenance: Côte d'Ivoire, Cameroun, Gabon, Ghana, Congo (Brazzaville)

Description : Bois de cœur de couleur acajou brun-rose à reflets violacés. Grain assez fin, fibre un peu tourmentée. Contre-fil

donnant un aspect rubané sur quartier. Texture très homogène. Aubier différencié de couleur rose

Densité: 0,55 à 0,70 Dureté: Assez tendre et léger

Rétractabilité: Retrait total assez faible, moyennement nerveux

Propriétés mécaniques : Assez bonnes résistances mécaniques. Assez cassant aux chocs.

Propriétés technologiques : Usinage assez facile, légèrement désaffûtant, se peint, se vernit, se colle facilement. Les clous et

les vis s'enfoncent et tiennent bien. Bois de cœur assez durable.

Applications marines: Identique à l'Acajou

Teck ou Teak (UK) (Tectona grandis)

Provenance: Thaïlande, Birmanie, Indonésie, Viet-Nam, Guyane

Description : Bois de cœur brun verdâtre fonçant à la lumière, à reflets cuivrés. Grain plutôt grossier, fibre droite. Structure

hétérogène. Gras au toucher. Aubier différencié blanchâtre de 1 à 3 cm, inutilisable.

Densité : 0,55 à 0,80 Dureté : Mi-dur et mi-lourd

Rétractabilité: Retrait total très faible, très peu nerveux

Propriétés mécaniques : Résistances mécaniques moyennes. Plutôt élastique, moyennement résistant aux chocs.

Moyennement fissile.

Propriétés technologiques : Travail assez aisé, quelquefois désaffûtant; se polit très bien. Bois de cœur résistant aux champignons et aux insectes. Qualités très variables selon les origines, le teck de Siam est souvent le plus recherché pour les

constructions de luxe

Applications marines: Ponts

Western red cedar ou canoë cedar (Thuya plicata)

Provenance : Importé de la côte occidentale des Etats-Unis et du Canada. Quelques reboisements en France et Belgique
Description : Bois de cœur de couleur brun rougeâtre, non résineux. Le fil est droit, le grain grossier. Cette essence présente
souvent des variations de teintes importantes : de brun chocolat foncé à rose saumon, qui s'estompent après exposition à la lumière. Aubier

brun pâle, étroit.

Densité : 0,35 à 0,45 Dureté : Très tendre et léger. Rétractabilité : Faible retrait, peu nerveux

Propriétés mécaniques : Faibles résistances mécaniques. Fissile et cassant aux chocs.

Propriétés technologiques : Bois facile à usiner. Tient assez mal les clous et les vis (qui doivent être galvanisés). Bois de cœur

extrêmement durable.

Application marine: Le plus utilisé de tout les cèdres. Lisses jointives, longerons lamellés des grosses unités. Bois moulé avec des plis sciés supérieurs à 6 mm d'épaisseur

Sapelli ou aboudikro, sapele, assié-sapelli, sapelli-mahagoni.

Provenance : Afrique tropicale, Côtes d'ivoire, Ghana, Caméroun.

Description: Bois parfait brun rosé à brun rouge à reflets dorés. Aubier gris rosâtre distinct. Grain fin. Bois très homogéne.

Densité : 0.6 à 0.75

Durabilité: Bois moyennement durable.

Propriétés mécaniques : Bonnes propriétés mécaniques, contrefil, Bois assez nerveux assez facile à usiner. Emplois : Menuiserie ,ébénisterie ,construction navale, placage industriel des panneaux,(contreplaqué)

Fiches d'hygiène et de sécurité générales sur l'utilisation des résines époxydes

stockage

Les résines liquides époxydes sans solvant:

Elles sont stables à température ambiante (15-20°C) durant de longues périodes (1 an minimum) dans leur emballage d'origine. Certaines références peuvent cristalliser quelques mois après leur formulation. Ce phénomène réversible est lié à la pureté de la résine de base, au degré de modification, à la nature des adjuvants et à la température de stockage. La résine commence par se troubler et peut évoluer jusqu'à la solidification. Elle peut être ramenée à l'état liquide et redevenir utilisable après chauffage à 60°C pendant 4 heures ou 15 secondes au four micro-ondes.

L'étuvage à plus de 60°C pendant de longues période s entraîne une augmentation de viscosité et un changement de couleur. La stabilité au stockage à chaud varie avec les formulations.

Les conditionnements entamés seront conservés bien fermés, afin d'éviter l'évaporation de composants volatiles et de limiter le contact avec l'humidité de l'air.

Durcisseurs pour résines époxydes

Les bases de formulation des durcisseurs sont en règle générale sensibles au gaz carbonique et à l'eau. Les conditionnements d'origine seront stockés à 15-20°C dans un local sec et venti lé . Les agents de polymérisation SICOMIN ont une durée minimum de stockage d'un an. Après chaque utilisation, reboucher immédiatement les récipients d'origine.

Point éclair, risques d'inflammabilité

Le point éclair d'un produit est la température minimale sous une pression atmosphérique normale, à laquelle il faut le porter pour que les vapeurs émises produisent, au contact de l'air et en présence d'une flamme dans les conditions de l'essai, une inflammation instantanée limitée aux vapeurs émises.

Les résines époxydes et durcisseurs SICOMIN formulés sans solvant ont des points éclairs supérieurs à 90°C, et donc non inflammables dans des conditions d'application à température ambiante:

Point éclair des polyamines: supérieur à 90° C Point éclair des résines époxydes formulées: supérieur à 100° C

L'addition de solvants pour des besoins d'application fait varier de façon importante la valeur du Point Eclair

Produits de combustion dangereux

Les produits de combustion avec l'oxygène sont les oxydes de carbone (CO2, CO) et d'azote (Nox)

Moyen de lutte contre l'incendie

Appropriés: Mousse, C02, poudre sèche

Contre-indiqués: Jet d'eau

Réactions dangereuses

Résines époxydes:

Les produits dont le contact est à éviter sont les acides forts et les bases. Une polymérisation très exothermique peut survenir avec des amines aliphatiques primaires.

Durcisseurs pour résines époxydes:

Réactions dangereuses avec les oxydants forts, les dérivés halogénés (Chlore, Brome, Fluor)

Instructions concernant les risques de fuites et les déversements

Prévoir dans les locaux de stockage et dans l'atelier :

- Des matières absorbantes prêtes à l'usage, telles que: sable, terre à diatomées
- Des appareils respiratoires munis de cartouches carbone
- Des vêtements de protection
- Proscrire le rejet aux canalisations
- Informer et entraîner le personnel à la manipulation en toute sécurité, des fuites et à l'élimination des déchet

Instructions spécifiques aux résines:

Eliminer la plus grande quantité possible avec des matières absorbantes

Appliquer sur la surface contaminée un savon liquide pur du type «Proclean», brosser la surface

Eliminer le savon avec une matière absorbante, essuyer

Laver la surface contaminée avec du savon et de l'eau, puis à l'aide d'un solvant type trichloréthane

Instructions spécifiques aux durcisseurs

Les risques d'inhalation étant plus importants, le port du masque à cartouche carbone est obligatoire.

Absorber la plus grande quantité possible à l'aide de matières absorbantes. Eviter si possible la sciure de bois

Appliquer sur la surface contaminée un savon liquide pur du type «Proclean», brosser la surface

Eliminer le savon avec une matière absorbante, essuyer

Neutraliser la surface polluée à l'aide d'une solution acide diluée (acide acétique à 5%), rincer à l'eau chaude Les durcisseurs carbonatés peuvent être enlevés par un moyen mécanique.

Elimination des déchets

Transporter les résidus à une installation de combustion convenant aux matériaux produisant des vapeurs dangereuses.

Risques physiologiques

Ingestion de résine époxy:

En règle générale, les résines époxydes liquides ont une faible toxicité sur le plan oral. Si un produit est ingéré, diriger immédiatement le patient vers un centre hospitalier ou antipoison muni des fiches toxicologiques (FDS). La décision de provoquer ou non des vomissements doit être prise par un médecin.

Ingestion de durcisseur:

Lors d'une ingestion, ne pas faire vomir. Si la victime est consciente: faire boire de grandes quantités d'eau ou de lait et demander l'aide d'un médecin.

Contact de résine avec les yeux:

Les époxy peuvent être irritantes pour les yeux; le contact peut être douloureux et provoquer une irritation de la membrane conjonctivale. Rincer les yeux contaminés dans un courant d'eau fraîche à faible pression pendant au moins 15 minutes. Consulter un ophtalmologue sans délai.

Contact de durcisseurs avec les yeux:

Ces substances corrosives causent de sérieuses irritations ou lésions oculaires graves. Rincer avec beaucoup d'eau sous bonne pression pendant au moins 15 minutes. Consulter un ophtalmologiste sans délai.

Contact de résine avec la peau

Une exposition prolongée peut provoquer une irritation cutanée ou créer des réactions allergiques de la peau.

Après un contact avec la peau, essuyer avec un chiffon propre ou un papier essuie-tout, puis laver avec beaucoup d'eau chaude et du savon **SICOMIN PROCLEAN**. Enlever les vêtements contaminés et les nettoyer avant réutilisation.

Contact de durcisseur avec la peau

Se laver abondamment avec du savon **Proclean** et de l'eau chaude. Enlever immédiatement les vêtements contaminés et les nettoyer avant réutilisation, jeter les articles en cuir. Consulter rapidement un médecin .

Inhalation de résine

L'inhalation de résines liquides n'est généralement pas la source de problèmes pulmonaires ou autres, exception faite des hautes températures. Une bonne ventilation mécanique est suffisante pour la plupart des applications .

Inhalation de durcisseur

Si des nausées apparaissent, amener la personne à l'air frais et consulter un médecin. Eviter l'inhalation de poussières solides de durcisseur en portant un masque anti-poussière.

Autre information: Ne jamais faire boire ou vomir si la personne est inconsciente ou a des convulsions.

Protections personnelles à observer:

- Eviter le contact avec les yeux et la peau, éviter de respirer les vapeurs ou brouillards de pistolage
- Ne pas boire ou fumer dans l'atelier
- Porter des lunettes de sécurité équipées de coques latérales
- Porter des bottes, un tablier, des gants en PVC ou en latex jetables. Les crèmes de protection ne peuvent se substituer au port de gants
- Ne pas réutiliser des vêtements contaminés
- Installer à portée de main du papier essuie-tout et des poubelles à couvercle
- Prévoir un rince-oeil et une douche à proximité de la zone de travail
- Prendre garde que les objets jetables contaminés ne deviennent pas une source de risques pour les autres ouvriers, le personnel de nettoyage, ou pour les personnes chargées de l'élimination des déchets solides.

Protections collectives

- Installer une ventilation suffisante pour extraire en toute sécurité les vapeurs et odeurs, et pour assurer une source d'air frais. La conception du système d'aération ne doit pas positionner l'utilisateur entre la source d'émanation et le conduit d'aspiration.
- Isoler les zones de travail de l'époxy afin de limiter l'exposition des autres employés
- Contrôler l'équipement d'extinction des foyers d'incendie
- Obliger chaque membre du personnel à maintenir une stricte hygiène de leur personne et de leur lieu de travail
- Faire en sorte que le personnel reçoive continuellement des informations sur les conséquences des contacts avec la résine.

L'informer sur les risques éventuels de nouveaux produits, sur les techniques adéquates d'élimination des déchets.

Informations environnement

Résines époxydes:

Non biodégradables, insolubles dans l'eau, modérément toxiques pour le poisson; les époxydes sont des polluants aquatiques potentiels

Durcisseurs

Sont en général biodégradables. On évitera par tous les moyens la fuite aux canalisations

Données toxicologiques* et de sécurité des systèmes bois, 5550, 8450

Composants Données toxicologiques

RESINES SR 5550		Xi: irritant	N: Dangereux pour l'environnement
SR 8450			quatiques, peut entrainer des effets néfastes
DUCISSEURS SD 5505 SD 5504		C: Corrosif	
SD 5503 SD 5502	R 20/21/22 R 24/25 R 34	Nocif par inhalation, contact avec Toxique par contact avec la per Provoque des brûlures	1 , 1 9
SD 8451 SD 8453 SD 8454	R 42/43	•	on par inhalation et contact avec la peau

^{*:} Pour obtenir des informations plus complètes, veuillez consulter les fiches d'hygiène et de sécurité détaillées. Les renseignements et conseils de ce manuel bois sont basés sur l'état de nos connaissances relatives à l'application décrite. Ils sont donnés de bonne foi. L'attention des utilisateurs est attirée sur les risques éventuellement encourus lorsqu'un produit est utilisé à d'autres usages que ceux pour lesquels il est conçu. Elle ne dispense en aucun cas l'utilisateur de connaitre et d'appliquer l'ensemble des textes réglementant son activité. Il prendra sous sa seule responsabilité les précautions liées à l'utilisation qu'il fait du produit.

NOS AGENCES

SICOMIN Sud

B.P. 23 - RN 568 13 161 Châteauneuf-les-Marijutes

Tel: + 33 (0)4 42 42 30 20 Fax: + 33 (0)4 42 81 29 29 composites@sicomin.com

www.sicomin.com

SICOMIN Ouest

Z.A. Le Guirric 29 120 Pont-L'Abbé

Tel: + 33 (0)2 98 87 30 93 Fax: + 33 (0)2 98 87 33 00 composites@sicomin.com

www.sicomin.com

SICOMIN Ile de France

B.P. 60 - 8, rue Eugène Hénaff 93 240 Stains

Tel: + 33 (0)1 49 71 20 70 Fax: + 33 (0)1 49 71 03 50 composites@sicomin.com

www.sicomin.com

SICOMIN Centre

Le Cléart 01 140 Illiat

Tel: + 33 (0)4 74 24 05 90 Fax: + 33 (0)4 74 24 00 98 composites@sicomin.com www.sicomin.com

Caraïbes Multicap Caraïbes

BP 898 - Quai Ouest 97 245 Fort de France Cedex Martinique

Tel: 05 96 71 41 81 Fax: 05 96 71 41 83 mcm@multicapcaraibes.com

Italie Coretex

Via Luca Fancelli, 12 A 46 100 Mantova Tel: + 39 34 835 166 09 Fax: + 39 376 693 219 coretex@tin.it

Océan Indien PSI

39 Bd Auguste Lacaussade Lot Tamarins 97 420 Le Port La Réunion Tel : 00 262 43 53 63 Fax : 00 262 42 36 28

psi.sarl@guetali.fr

Allemagne Time Out Composite

OttostraBe 1 (Halle 1.5)
D - 53 332 Bornheim - Sechtem
Tel : + 49 (0) 22 27 925 610
Fax : + 49 (0) 22 27 925 620
time.out@gmx.de

Pacifique Coprodex

BP 24 Chemin du grand pin vert 13 671 Aubagne Cedex

Tel: +33 (0)4 42 18 56 20 Fax: +33 (0)4 42 03 61 69 info@coprodex.fr

Turquie Derya Marine Servis

Netsel Marina E Blok N⁶7 Marmaris - Mugla

Tel: + 90 252 412 52 25 Fax: +90 252 411 33 61 derya@ada.net.fr

Emirats Gulf National Trading

Po Box 274
Abu Dhabi - United Arab Emirates
Tél: 00971 (0)2 6334 592
Fax: 00971 (0)2 6332 413
Mobile: 0050 6133 601
e-mail: gntrader@emirates.net.ae

Royaume-Uni Matrix Mouldings

Unit 8 Central Trading Estate 227 Bath Road Brislington, Bristol BS 4 3 EH Tel: + 44 (0) 117 971 5145 Fax: + 44 (0) 117 977 8388 info@matrixmouldings.co.uk www.matrixmouldings.co.uk